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PREFACE

The project on which we report here had three objectives. The first was to develop new
methods for modeling regional wave propagation in laterally heterogeneous media. Toward
this end we developed some new computational techniques for seismic wave scattering based
on the boundary element method and multipole expansions. In this report we include a
preprint of a paper entitled, “Multiple multipole expansions for elastic scattering,” which
has ’been submitted to Journal of the Acoustical Society of America. The second objective
was to develop techniques for relative event location and apply them to problems of nuclear
monitoring. The second part of this report is the application of a relative event location
method we developed, based on waveform cross-correlation, to the location of presumed ex-
plosions at the Balapan, Kazakhstan Test Site. Events at this test site have been located
very accurately on the basis of satellite images, and this provides the opportunity to test
the accuracy of our approach and compare it to the location accuracy achievable with con-
ventional seismic techniques. Our third objective was to study the effects of non-spherical
cavities on the seismic wave radiation from explosions. The final section of this report is a
preprint of a paper, “Multipole radiation of seismic waves from explosions in non-spherical

cavities,” which will appear in the Journal of the Acoustical Society of America.

vii




MULTIPLE MULTIPOLE EXPANSIONS FOR ELASTIC
SCATTERING

Matthias G. Imhof
Earth Resources Laboratory
Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142 - 1324

ABSTRACT

The paper presents a new approach to solve scattering of elastic waves in two dimensions. Tradi-
tionally, wave fields are expanded into an orthogonal set of basis functions. Unfortunately, these
expansions converge rather slowly for complex geometries. The new approach enhances convergence
by summing multiple expansions with different centers of expansions. This allows irregularities of
the boundary to be resolved locally from the neighboring center of expansion. Mathematically, the
wavefields are expanded into a set of non-orthogonal basis functions. The incident wavefield and
the fields induced by the scatterers are matched by evaluating the boundary conditions at discrete
matching points along the domain boundaries. Due to the non-orthogonal expansions, more match-
ing points are used than actually needed resulting in an overdetermined system which is solved in
the least squares sense.

Since there are free parameters such as location and number of expansion centers as well as
kind and orders of expansion functions used, numerical experiments are performed to measure the

performance of different discretizations. An empirical set of rules governing the choice of these




parameters is found from these experiments. The resulting algorithm is a very general tool to solve

relatively large and complex two-dimensional scattering problems.

INTRODUCTION

The calculation of synthetic seismograms has been of interest for many years. Various methods
have been proposed for modeling waves in heterogeneous media. Each of them has it’s own range
of validity and interest. Fully numerical techniques in the space-time domain, either in the finite
difference formulation (Kelly et al., 1976; Virieux, 1986) (FD) or in the finite element formulation
(Smith, 1974) (FE), handle any kind of waves in complex media. Unfortunately, they are limited
due to computer memory and runtime considerations, since for many problems the distances be-
tween scatterer, source and receiver are large. An area containing the source, the receiver and
the scatterers plus a substantial neighborhood around them has to be discretized, which might
result in prohibitive computation times. The (generalized) ray theory (Cerveny et al., 1977; Hong
and Helmberger, 1978; Cerveny and Pgencik, 1984) can be used when the scatterers and their
radii of curvature are large compared to the wavelength. For small or weak scatterers, the Born
approximation (Miles, 1960) allows an efficient calculation of the seismogram.

In other cases, the problem can be simplified by assuming the medium to consist of homogeneous
regions with sharp boundaries inbetween. Then, reflectivity (Miiller, 1985; Kennett, 1983) and
global matrix methods (Chin et al., 1984) are routinely used for planarly or cylindrically layered
media. For laterally heterogeneous media, numerical integration over wavenumber can be used
(Aki and Larner, 1970; Bouchon and Aki, 1977; Haartsen et al., 1994). In the elastic case, the
classical eigenfunction expansion (Morse and Feshbach, 1953) (SMP) allows the analysis only of
simple shapes such as circular cylinders or spheres since the eigenmodes do not decouple otherwise
(Pao and Mow, 1973). Methods based on the perturbation of a prescribed geometry, such as the
T-matrix method (Waterman, 1976; Bostrom, 1980) work extremely well for certain geometries but
are harder to apply efficiently in general situations.

The method we present is a derivative of the boundary element methods (Brebbia and Dominguez,
1989) (BEM). It was first presented as a more general approach for electromagnetic scattering
(Ballisti and Hafner, 1983; Hafner, 1990) and later adapted to acoustic scattering problems (Imhof,

1995). In contrast to more traditional approaches, the wavefields are expanded into a set of non-




orthogonal and non-complete basis-functions. Actually, non-complete basis-functions are not a
new concept since for numerical and computational reasons we can never use infinitely many basis-
functions. But the application of a non-orthogonal expansion allows the reduction of the truncation
errors (Hafner, 1993).

To solve for the unknown weighting coefficients of the basis-functions, discrete matching points
are chosen along the boundary of the scattering object. In the elastic case, each matching point
provides four boundary conditions and thus four equations involving the unknowns. Because the
expansion is non-orthogonal, we require more equations than unknowns, build an overdetermined
matrix system and solve it the least-squares sense. Mathematically speaking, we search for the set
of weighting coefficients which solves the problem at hand “best” employing the expansions chosen.
There will always be an error in the boundary conditions at each matching point, though on the
average these errors are small. Furthermore, the fields in between matching points are forced to be
smooth, such that no wild jumps or oscillations can occur. Thus, as an added bonus, we control the
behavior of the expansions in between matching points where we have no control using traditional
methods. Also, this allows us to see in which parts of the boundary the expanéions chosen can
solve the problem and where they need further refinement.

This paper will be structured as follows: First, we will adapt the method from acoustical (Imhof,
1995) to elastic scattering. Then we present results from several calculations and compare them to
solutions obtained by the finite difference method and the classical eigenfunction expansion. We
show how different discretizations affect the solution. Finally, we will compile these findings into
an empirical set of rules which allows us to set a problem up in a fashion which yields satisfactory

results without having to do it on a trial and error basis.

THEORETICAL BACKGROUND

We would like to model how an incident wavefield % ¢(F,w) scatters from an object. The situation
is depicted in Figure 1. For the sake of clarity, we will suppress the time factor e=** in all following
expressions. Superscripts denote the region to which a material property or fields belongs to, and,
to distinguish different regions or domains, we use the symbol I'*. The boundary between the two
regions I'? and T'! will be denoted by 8Tg;. We also call the region T'? the background and define

T'! to be the scatterer.




In the frequency domain, elastic P-SV waves travelling in a two-dimensional, homogeneous

medium are described by (Pac and Mow, 1973)

k}fvv.a-%vaXﬁm:o (1)
where we defined the wave vectors k¥ = w/a and [ = w/f for a particular frequency w and the
propagation velocities @ = /A + 2i/p and 8 = /u/p. The parameter p, A and p denote the
density and the Lamé parameters of the medium, respectively.

In a local cylindrical coordinate system (r,6,y) centered at a point &, (Figure 2), the strains

due to a displacement @ are expressed as (Pao and Mow, 1973)

ou
rr p——7 T 2
€ or (22)
Oug  Ou,
€00 20 " ar (2b)
1/10u, Ous ug
= = — —_ _—— —— 2
ero = €or 2 (r 00 + or 7‘> (2¢)

All other components are zero since they involve the u, component or cross-derivatives with respect

to y. Thus, the stresses are linearly related to the strains by (Pao and Mow, 1973)

Opg = Abpq Z €kk + 2pt€pg where p,q € {r,0} (3)
k

-

A displacement field @ i"C(:;) incident on the scatterer will induce two scattered fields: @ %(Z, w)
outside the scattering object and % !(%,w) on the inside. The displacements and stresses inside
and outside the scatterer are related by the boundary conditions. For the problem posed, these
conditions are continuities of displacement and stresses in both normal and tangential direction.
We define the normal # to point from medium I'? into medium I'* as depicted in Figure 2. Using

the subscripts n and ¢ to denote the normal and tangential direction, we write

Uy + U = g (42)
up +u™ =y (4b)
ol 4ot =gl (4c)
Tne + O = ops (4d)

Since we express the displacements and stresses in a local cylindrical coordinate system (r,6,y),

but want to specify the boundary in a local cartesian system (n,t,y), we have use the rotation




matrix M to transform the individual components

" o= M@ (5)
o nity = M. o rfy . MT (6)

where the rotation matrix M is defined by the unit vectors 7, 9, fi and {.

A-F A-8 0
M=| .7 .6 0 (7)
0 0 1

Instead of using the displacement @ directly, we break it into two parts
UZT) = VO(Z) + V x {¥(Z)y} (8)

using the scalar potentials ®(Z) and ¥(Z). Then, equation (1) separates into two independent

Helmholtz equations:

(V) ®(2,w)=0 (9a)
(V2413 ¥(Z,w) =0 (9b)
Therefore, we replace the induced displacement fields % °(#,w) and @ }(£,w) by the potentials

®0(#,w), ¥O(# w), ®Y(F, w) and ¥1(F, w). Similar to the acoustic case (Imhof, 1995), we expand
the potential fields as:

P 4N
U F,w) = Z Z By (&, Ty kY, w) + € (10a)
P +N
V@) = D3 @) + (100)
p=0n=—
where ¢pn(x, 4 k4 w) and w]‘fn(", pd, 14, w) are solutions to either Helmholtz equation (9a) or (9b),

respectively. The error terms e and e are included not only since the series are truncated after
£N terms but also because an expansion of this form is mathematically non-orthogonal.

An expansion of the form (10a) or (10b) is known as a multiple multipole (MMP) expansion
(Ballisti and Hafner, 1983; Hafner, 1990). Setting P to zero yields the classical eigenfunction




(SMP) expansion (Morse and Feshbach, 1953). In the background region I'’, we choose propagatory

solutions for the expansion functions qﬁgn and wgn:

(@8 K w) = HL (0 |E - E]) & (11a)
8. E0 10 w) = H (1°)F - 3D)) e (11b)

For the sake of clarity, the notation 5;'1} for an expansion center means the p** center for the

expansions of ®!(Z,w) and U!(F,w). The location is not fixed yet. We can either set the center fz}

inside the scatterer I'' and thus #} € ' or we can place it in the background (&, € I'°). For a finite
scatterer T'!, we have two possible choices for the expansions of the fields ®!(F,w) and ¥(Z,w).

First, we can place the expansion centers into the scatterer itself (¥} € I'!) and use expansions

P
involving the Bessel solutions Jj,, e corresponding to standing waves (Morse and Feshbach, 1953).

O T, Tp kY W) = Jjoy (K1 T~ Z)]) €™ i &, €T (12a)
V(@B LR W) = T (M |E-E) €™ ifElelt (12b)

Second, we can place the the expansion centers into the background (5:',} € I'%) and use propagatory

solutions H |1n| €™ involving the Hankel functions of the first kind.

(@ EL kL w) = ) (5 1E -2 e i@y el” (13a)
Pha(E, 2L K W) = Hlﬁfl) @t E-TH) e ifEt el (13b)

These expansions represent waves propagating from the expansion center toward the scatterer
(Morse and Feshbach, 1953). In the scatterer, we need waves propagating in all the directions.
Thus, we place expansion centers all around the scatterer and “illuminate” the region I'! from all
sides.

To emphasize the difference between the expansions (12) and (13): if :fpl is placed inside the
scatterer T'!, then we have to use (12) because the Bessel solutions Iin e’ represent standing

waves. Contrary to the Hankel solutions, the Bessel solutions do not have a singularity at their

(1)

origin. Expansion functions involving Hankel functions H In

may never be used for the wavefields
of the domain in which their expansion center &, is located in since the singularities at the origin

represent sources. But by definition, the only source in the problem posed is the incident field




o

i ™. But if i"pl is located outside the scatterer, then we have to use (13) with the Hankel solutions

Hl(il) e representing wavefields propagating towards the scatterer. The singularities pose no

problem anymore since they are not located in the domain I'l. Figure 3 illustrates this subtlety.
We solve for the unknown coefficients agn and bgn by enforcing the boundary conditions (4a)

- (4d) on M discrete matching points &, along the domain boundary O'g;. Since we have four

boundary conditions, each matching point also provides four rows of the linear matrix system.

Altogether, we have 4J = 2-2- P - (2N + 1) unknown coeflicients agn, bgn. To simplify the no-

tation, we eliminate an index by sequentially renumbering the double-indexed expansion functions

4 (#&¢ k% w) and the coefficients a, which results in ¢4(, Zf,

' Zp s k%,w) and a4, respectively. The

same is done with the 1pgn z, a':’l‘,i, 14, w) and the coefficients bgn resulting in 1/1?(:2', f]‘-i, 14 w) and b‘;,
respectively. Putting all together, we have to solve a matrix system of the form

-3 v el Wl al Tin En
o) -w? @l W b0 a g
t t t t t t
0 0 @l 1 oA - + (14)
(I)nn lI’nn (I’nn \I,nn a Onn €nn
-9, -0l &l W bt g é
nt nt Tt nt / 4pxad 47 nt /am nt ) am

where we used the submatrices ®2 and ¥¢ to denote the normal displacements u,, at the matching
points due to d)? and 1/1;-1, respectively. The submatrices <I>‘ti and lI"ti are the same but for the
tangential displacements u;. The submatrices ¢ and W2, contain the normal stresses o,n, while
®¢, and W, contain the tangential stresses oy

Defining the matching points by their location Z,,, we can write these submatrices as

B8 i = tn(63(Em)) Te i = tn (Y (Em)) (15a)
O i = ui(65(Fm)) U] i = w0 (Em)) (15b)
&L, i = Onn(9F(Em)) Ue i = Onn (5 (Fm)) (15¢)
Oty s = Tnt(9F(Tm)) U2y s = One (V5 (Em)) (15d)

where we used the index m € {1,...,M} to denote the matching points Z,,, the index j €
{1,...,J} for the expansion functions ¢?, 1/;5-1 and the index d € {0,1} for the domain. The notation
un(d);!(:fm)) stands for the normal displacement due to the expansion function d)? evaluated at the

matching point &,,,. The other ones are to be interpreted similarly.




1 and b! in equation (14) contain the unknown coefficients a?, b%, al, b} for

0 70 =
The vectors @”, b°, @ 73 05y @55 05

the expansion functions ¢g, ?, ¢} and wjl-, respectively. The vectors Up, @t, Onn, and dn¢ hold the
normal and tangential displacements as well as normal and tangential stress at the M matching

points due to the incident field 7 ¢,

Unm = ufl"c(fm) Utm = uénc (Zm) (16a)
Tnnm = o (Em) Tntym = Ot (Em) (16b)

Finally, the matrix equation (14) contains the residual vectors é,, &, &nn, €nt With the misfit of the

boundary conditions at the individual matching points.

NUMERICAL RESULTS

To reduce numerical noise, we make the materials slightly lossy by adding a small imaginary
component wy to the frequency (Bouchon and Aki, 1977). Thus, we have to evaluate Bessel functions
with a complex argument (Amos, 1986). After the transformation from the frequency domain into
the time domain, we recover the true amplitude by a multiplication with e“’t. The matrix system
is solved by QR decomposition using Givens rotations (Wilkinson, 1988) which allows to build
the matrix system row by row while only a triangular matrix with dimensions of the number of
unknowns has to be kept in memory (George and Heath, 1980). Since we want to calculaté synthetic
seismograms using a frequency domain method, we have to solve the scattering problem for a range
of frequencies and later apply a Fourier transformation to obtain the seismograms. All these
problems can be solved independently of each other. Consequently, the algorithm is implemented
on an nCUBE?2 parallel computer where each processor will calculate a few frequencies.

We will now show how the method performs solving a very simple problem using different
ways to discretize it. For the sake of simplicity, the incident field % ¢ is an explosive line source
modulated with a Ricker wavelet (Hosken, 1988; Paillet and Cheng, 1991) of 50 Hz center frequency.
Altogether, 64 receivers will measure the u, component of the scattered field i ® in the background.

The rather generic scatterer is depicted in Figure 4. Its size is roughly 240m in length and
50m thickness. The velocities in the background are o’ = 2000m/s and 3% = 1155m/s, while in
the scatterer they are a! = 3000m/s and 8! = 1732m/s. Thus, the Poisson’s ratio is the same for

both regions (¢ = 0.25). To facilitate the comparison with a solution obtained by finite differences,




the density p = p° = p! is kept constant at 2000kg/m®. The center frequency of 50Hz yields
wavelengths of essentially of same size as the scatterer.

In order to have a reference seismogram to compare the different solutions with, we calculate
the solution using a finite difference (FD) method (Kelly et al, 1976; Peng and Toksoz, 1994).
The resulting reference seismogram is shown in Figure 5. As a measure of how well the MMP

MMP(

seismogram u r,t) correlates with the FD reference seismogram ufP(r,t), we define the root

mean square error RMS by summing over the squared difference between the two seismograms

RMS = %\J iXT: {uMMP(p ) — uFD(r, t)}2 (17)

r=]1t=1

where u,(r,t) denotes the vertical displacement measured at recorder r at time sample . R = 64

is the number of recorders and T' = 256 is the total number of time samples.

MMP versus the Finite Difference Reference Solution

As a first example, we show both a solution obtained by MMP expansions and the reference solution
as obtained by finite differences. For the finite difference case, we used a grid spacing of 1m and
a grid of 750 by 750 points. The grid dimensions are larger than needed to prevent any reflection
from the boundaries to reach the receivers. The timestep was 0.05ms. The runtime on a nCUBE2
using 64 nodes was 23 minutes. The seismogram calculated by finite differences is presented in
Figure 5.

For the MMP expansion, we used a total of 256 expansion functions, 128 matching points, 8
expansion centers and 64 frequencies. The resulting runtime on a nCUBE2 using again 64 nodes
was 12 minutes. The two methods yield very similar results. Figure 6 shows the seismogram
calculated using the MMP expansion. As can be seen, they agree very well in both traveltimes and

phases.

Effect of the Number of Expansion Functions

As a second experiment, we study how the number of expansion functions affects the solutions
obtained. We start with totally 32 expansion functions located at 8 expansion centers. Thus, we

have one monopole for each potential and each region at every expansion center.




We calculate the resulting seismogram and estimate the RMS error. Then we double the number
of expansion functions per expansion center, calculate the seismograms anew, estimate the RMS
error and so on until 1024 expansion functions are used. The number of matching points is kept
constant at M = 1024 while the number of expansion centers is kept constant at P = 8. Figure 7
shows the resulting RMS error as a function of the total number of expansion functions used. A
first observation is that 256 expansion functions seems to be the critical amount. Using fewer yields
solutions which cannot capture important features of the reference seismogram, the solutions do
not converge. Figure 8 shows a seismogram which is typical for a not converged solution. The
seismogram was obtained with 64 expansion functions. For more than 256 expansion functions, we

have convergence where RMS error decreases slowly with increasing number of expansions functions.

MMP versus SMP Expansion

The next numerical experiment we perform is to show the enhanced convergence of the MMP
expansion compared to the classical eigenfunction expansion (SMP). As mentioned priorly, the
eigenfunction expansion corresponds to an expansion (10a) or (10b) with only one expansion center.
Thus, we perform the same experiment as before but use only one expansion center. Again, we start
with one expansion function per domain and potential which yields totally 4 expansion functions.
We calculate the resulting seismograms and estimate the RMS error. The resulting seismogram
is presented in Figure 9. The seismogram is clean enough to be mistaken as correct but has no
resemblance with the reference solution shown in Figure 5. Then we double the number of expansion
functions per expansion center, calculate the seismograms, estimate the RMS error and so on. The
number of matching points is kept constant at M = 1024.

Figure 7 shows the resulting RMS error as a function of the total number of expansion functions
used. We notice that the MMP expansion using 8 expansion centers always performs better.
Unfortunately, using more than 256 expansion functions in the SMP expansion yields no useful
result anymore because the expansion functions of higher order violate the sampling condition
(Hafner, 1990; Imhof, 1995). The maximum order N™%® of a multipole is given by the largest angle
©™% between any two adjacent matching points and the location of the multipole:

s
mar
12

Nma:c <

(18)

The increased error in the SMP expansion for 32 and 64 expansion function is an effect of the
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error measure (17) which cannot acount for phase shifts. Contrary to the MMP expansion, a SMP

expansion cannot solve the problem posed in Figure 5.

Effect of Number and Location of Expansion Centers

The next numerical experiment is to examine the importance and effect of the number, location and
distribution of expansion centers. As priorly mentioned, we have the choice of placing the expansion
centers for the ®!(F,w) and ¥(F,w) fields either in- or outside the scatterer and thus expanding
either into standing waves Jj,| (kr) ¢ or into propagating waves H |(i[) (kr) €™, respectively. We
will use both to study the difference.

We calculate the solutions for a range of expansion centers while keeping the total number of
expansion functions constant at 256. Also, the number of matching points is kept constant at 256.
The overall computational effort to calculate one seismogram is kept constant. The resulting RMS
errors are shown in Figure 10. It is surprising how broad the ‘U’ shaped minimal-error region is.
The range from 4 up to 17 expansion centers converges. Indeed, the minimal RMS error obtained
by 11 expansion center is only slightly better any other discretization employing 4 to 17 centers.
Remarkably, MMP expansions seem to be very insensitive to the discretization used! Neither the
number of expansion centers nor the kind of expansions changes the RMS errors by much, although
the use of H, fil) (kr) €™ produces a smoother RMS error curve.

The pathological case with 23 expansion centers shows that the RMS error finally increases
when more and more expansion centers are used. In this particular case, the expansion centers
were separated by only a quarter of the dominant wavelength. The different expansion functions
begin to interact by approximating higher order solutions to the wave equation: it is well known
that two monopoles of opposite sign placed closely together are equivalent to a dipole. Thus, the
matrix system becomes more and more ill-conditioned since each expansion center could be replaced
by the adjacent ones. Moreover, we add more and more similar equations to the matrix system
which renders it more and more ill-conditioned.

For comparison, we also use a simple boundary element (BEM) discretization with the same
number of matching points and expansion functions. Along the boundary inbetween matching
points, we place rotational and compressional monopole sources. As in the MMP cases, we use

point matching and solve the system in the least-squares sense. The resulting large RMS error
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indicates that the seismogram obtained is not correct. Indeed, it contains mainly the reflections
from the top of the scatterer. Both reflections from the bottom and internal multiple scattering

are mostly missing.

Effect of the Number of Matching Points

The last numerical experiment examines how the number of matching points affects the solutions.
Actually, not the number of matching points but the ratio between the total number of equations
in the matrix system and the number of expansion functions used is the important parameter.
In accordance with the earlier experiments, we choose 12 expansion centers and keep the number
of expansion functions constant at 256. Since each matching point provides 4 equations (one for
each boundary condition), we start out with 64 matching points along the boundary which provide
256 equations altogether. We calculate the resulting seismogram, estimate the RMS error, double
the number of matching points and so on. Figure 11 shows the RMS error against the number
of equations per expansion function. Since the expansion is non-orthogonal, it is not surprising
that we get a large RMS error when we use as many equations as we have unknowns. Using twice
as many equations as unknowns provides the optimal result. Afterwards, the more equations we
add, the more the RMS increases since the matrix system becomes more ill-conditioned with each
additional equation we add. The result is more errors due to roundoff and other numerical effects.

Using twice as many equations as unknowns yields a distance of 4m between matching points.
This spacing corresponds to 10 matching points per dominant wavelenght (40m). Assuming that
the highest frequency in the propagating seismic wavelet is 3 times the center frequency of 50Hz,
the boundary is sampled with 3 matching points per wavelength for the highest frequency. The
sampling theorem which states that the boundary has to be sampled at least twice per wavelength to
prevent aliasing (Bouchon and Aki, 1977), is just satisfied. Thus, it is also theoretically reasonable

to have about 10 matching points per dominant wavelength.

DISCUSSION

Combining these numerical experiments with prior experiences with electromagnetic (Hafner, 1990)
and acoustical MMP methods (Imhof, 1995), we obtain a set of empirical rules how to discretize

elastic scattering problems. A very important parameter is the radius of greatest influence of a
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multipole which is v/2 times the distance between the center of expansion and the closest matching

point.
e The radius of greatest influence should be on the order of the dominant wavelength.

¢ No expansion center should be within the radius of greatest influence of any other expansion

center.
e There should be &~ 10 matching points per dominant wavelength

e There has to be at least half a matching point per expansion function or similarly two equa-

tions per expansion function.
e The maximum order NV of a multipole is given by the sampling theorem: N < 7 /@™*

¢ Expansions of the form H (1) (k7 €in® should not be used for the region their expansion center
In] g

Zp is located in.

All of these rules, except the last one, are only general guidelines. Adhering to these guidelines
yields satisfactory results. As the numerical experiments show, all parameters can be varied by
large amounts while only perturbing the resulting solution. The MMP method is not very sensitive
to the actual discretization used.

As shown, the MMP expansion converges faster than the classical multipole or simple boundary
element expansions for complex scattering geometries. The method is either able to solve scattering
problems involving harmonic sources or to calculate seismograms by Fourier synthesis. For the
problem posed, we also found the MMP expansions to be faster than finite difference modeling
with approximately the same degree of accuracy. In the example, source, receivers and scatterers
were located close to each other. For problems with larger distances between them, we can expect
an even greater decrease in computation time compared to finite differences. Furthermore, due
to its spectral nature, attenuation can easily be accounted for. Thus, the MMP method is well
suited for a large range of scattering problems since both acoustic and elastic media with different
boundary conditions (fluid-fluid, elastic-elastic and others) can be treated exactly the same way in

this algorithm.
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Figure 1: Schematic representation of the scattering experiment. An incident field @ *°(Z,w)
illuminates a bounded two-dimensional inhomogeneity which induces a scattered field 7@ °(#,w) in

the background medium (a®, 8%, p°) as well as a field @ }(Z,w) in the scatterer itself (a!, 81, p!).

N>

<>

x>

Figure 2: Schematic of the coordinate systems used. Additional to a global cartesian coordinate
frame (z, 2,y), local cylindrical systems (r,0,y) with origins at &, are used. Such a local origin or
expansion center is depicted by the triangle. Boundaries between different media are defined by
discrete matching points located at #,, where normal 7 and tangential £ directions are specified.

The matching points are denoted by squares.
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Figure 3: Basis functions can either contain Hankel functions H, or Bessel functions J,. If the
same expansion center is to be used for ¢g as for ¢>Il,, then the inside field has to be expanded
using the Bessel functions J,, since they represent standing waves. If the inside and the outside
scattered field are to represented by Hankel functions H,, different expansion centers have to be

used. Expansion centers are depicted by a triangle while squares are used for matching points.
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Figure 4: Generic scatterer used for numerical experiments. The scatterer is illuminated by an
explosive line source modulated by a Ricker wavelet of 50Hz center frequency. The velocities in the
background domain I'® are a® = 2000m/s and 8° = 1155m/s. The velocities in the scatterer I'*
are a! = 3000m/s and B! = 1732m/s. The Poisson’s ratio is the same for both regions (o = 0.25).

For simplicity, the density is kept constant at p = 2000kg/m3.
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Figure 5: The seismogram of the model shown in Figure 4 calculated using a finite difference
method. This seismogram is used as a reference to compare the ones calculated with different

MMP expansions against.
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Figure 6: The seismogram of the model shown in Figure 4 calculated using the MMP algorithm.
Altogether, 256 expansion functions, 8 expansion centers, 128 matching points and 64 frequencies
were used. As can be seen, the MMP solution agrees very well with the finite difference reference

seismogram shown in Figure 5.
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RMS Error vs Total Number of Expansion Functions
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Figure 7: Comparison between the traditional eigenfunction expansion SMP (dashed) and the
MMP expansion (solid). Shown is how the total number of expansion functions affects the RMS
error compared to the FD reference. The SMP actually never converges since for 512 expansion
functions it violates the sampling condition. For 256 and more expansion functions, the MMP

expansion converge.
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Figure 8: The seismogram for the case when 64 expansion functions are used. The seismogram is
very noisy. Some of the prominent features in Figure 5 begin to show up, but the expansions have

not converged yet. More terms have to be used to obtain convergence.
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Figure 9: The seismogram for the case when only 4 expansion functions are used. Clearly, no self-
interaction of the scattered wavefields is possible. Unfortunately, the seismogram is clean enough

to be mistaken as correct.
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RMS Error vs. Number of Expansion Centers (Total Number of Expansions = 256)
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Figure 10: The effect of number and location of the expansion centers. The total number of
expansion functions is kept constant at 256 while the number of expansion centers is varied from 1
up to 23. Expansions using the same expansion centers :Epd e T'! for ¢°,¢° ¢!, 4! and thus Bessel
functions J,, as well as expansions using expansion centers i"po e T for ¢%, 4% and a'c'pl € I'0 for ¢, !
and thus Hankel functions H,, are tested. The difference between these two kinds of expansions is
rather small. Placing all expansion centers onto the boundary and using only the 0% order terms

which corresponds to a simple boundary element expansions fails surprisingly.
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Figure 11: Influence of the number of matching points on an expansion with 256 expansion functions

and 8 centers of expansion. Each matching point provides 4 equations. Since the expansion is non-

orthogonal, using as many equations as unknowns to be resolved does not yield a correct result.

Adding more and more equations to the system increases the condition number and thus the RMS

error is increased due to numerical errors.




RELOCATION OF EXPLOSIONS AT THE BALAPAN,
KAZAKHSTAN TEST SITE

Yingping Li, William Rodi, and M. Nafi Tokséz Earth Resources Laboratory
Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02142-1324

SUMMARY

We apply a technique for relative event location with differential arrival times to relocate
four presumed nuclear explosions occurring at the Balapan, Kazakhstan test site during 1987.
Waveform cross-correlation analysis was performed on seismograms from ten far-regional and
teleseismic stations.to determine differential arrival times for P waves and some PcP waves
relative to the Joint Verification Event of 14 September 1988. The resulting differential arrival
time data were used to determine the epicenters of the four events relative to the epicenter of
the JVE event. We compare our locations to highly precise epicenters determined from satellite
images, and to teleseismic locations obtained with the conventional location method applied to
hundreds of absolute arrival time picks. Our locations differ from the satellite locations by 2 to

3 kilometers and are more accurate than the locations obtained from hundreds of data.

INTRODUCTION

The ability to accurately locate seismic events is of crucial importance for seismic identification
and discrimination. We have developed a high precision relative event location method based
on seismic waveform cross-correlation analysis. Previously, we reported the application of this
method to quarry blasts in Estonia using near regional data from the Scandinavian arrays
FINESA, NORESS and ARCESS (Toksoz et al., 1993; Rodi et al., 1994). The results of thus
study showed a significant improvement in location accuracy compared to routine locations

done by the Intelligent Monitoring System, with relative epicenters between events estimated
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to have accuracies of approximately one kilometer. In the present report, we extend our method
to locate nuclear explosions in'the Balapan, Kazakhstan test site (K'T'S) using far-regional and
teleseismic waveform data.

During the years 1965 through 1989, 101 presumed nuclear explosions from the Balapan,
Kazakhstan Test Site (KTS) were detected and located teleseismically (e.g., Marshall et al.,
1984; Ringdal et al., 1992). There have been a number of teleseismic location studies of Balapan
events using the joint epicenter determination (JED) method of Douglas (1967). Marshall et
al. (1984) located 61 Balapan explosions through 1982, using the location of event 650115,
which is determined by LANDSAT satellite imaging, as a master event. Lilwall and Farthing
(1990) relocated presumed nuclear explosions from 1973 to 1989 using seven master events.
Furthermore, Thurber et al. (1994) used 27 master events to constrain the teleseismic locations
with both JED and a master event location algorithm. The locations of an additional 20
master events were determined by analyzing a SPOT satellite image (Thurber et al., 1993).
The locations of these presumed nuclear explosions have also been routinely determined by ISC
and NEIC. The ISC and NEIC generally used several hundred arrival time data recorded by
all available stations around the world to determine the epicenters. However, none of these
previous location studies have utilized the seismic waveforms recorded from the events.

Using both SPOT and LANDSAT satellite images, Thurber et al. (1993, 1994) determined
the locations of 101 presumed explosions at KTS with 100 m to 200 m precision. These studies
found that the teleseismic locations (JED) of most events agreed with the LANDSAT/ SPOT
shot points to within about 1 to 2 km. The high precision locations based on satellite images
also provide a ground truth database for testing our relative location method. In this report,
we apply our method to seismic waveform data from five nuclear explosions recorded at ten

stations, with epicentral distances from 23 to 67 degrees.

DATA PROCESSING

Figure 1 is a world map showing locations of five presumed nuclear explosions (circles) at
Balapan, KTS, and ten seismic stations (triangles) used in this study. All stations have vertical
short-period seismic instruments and a few of them also were equipped with three-component
broadband sensors. The sampling rate is from 20 to 40 samples per second. Figure 2 shows
the locations of the five presumed explosions, as determined by satellite imaging (Thurber et
al., 1993) and the PDE using teleseismic arrival time data (NEIC/USGS, 1987, 1988). The
hypocentral parameters of the events are also listed in Table 1. In order to examine the relative

locations among the events, we use the satellite image location of event 94, the JVE (Joint
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Table 1: Hypocentral Parameters of Five Presumed Underground Nuclear Explosions at the
Balapan Test Site
Event YrMoDa HrMinSec Latitude  Longitude my
(a) (b) (b) (c)
85 870620 005304.8  49.9367 78.7464 6.0
86 870802 005806.8 49.8806 78.8750 5.8
88 871213 032104.9 49.9614 78.7933 6.1
89 871227 030504.8 49.8789 78.7253 6.0
94 880914 035957.4 49.8781 78.8239 6.0

Notes: (a) Origin time is from NEIC/USGS. (b) Latitude and longitude are from from Thurber
et al. (1993). (c) my is from Ringdal et al. (1992),

Verification Experiment) event, as a common reference point. In Figure 2, the locations of the
other four events are plotted relative to this reference point. We can see from the figure that
location differences between the satellite image and PDE locations vary from 2 to 10 km. We
will use our waveform correlation/relative event location algorithm to examine what relative
location accuracy can be achieved with waveforms from only ten stations. The stations are
listed in Table 2, together with their distances and azimuths from the JVE event.

Figure 3 shows the seismograms of the JVE event (m;=6.0) recorded at the ten stations
shown in Figure 1. We took the JVE event to be a master event, and determined differential
arrival times between it and the other four events. Figure 4 shows vertical seismograms of
the five study events recorded at station LZH, with an epicentral distance of 23 degrees and
an azimuth of 118 degrees. We note that the P waveforms for the first few seconds are very
similar to one another, implying these events do not have significant hypocentral separation.
Since the epicentral distance from station LZH to the test site is at a far-regional distance,
the P waveforms are more complex than those recorded at teleseismic distance. This can be
seen in Figure 5, which shows vertical component seismograms of the five events recorded at
station COL, at an epicentral distance of 60 degrees and an azimuth of 21 degrees. In contrast
to Figure 4, the P waveforms recorded at station COL are relatively simple. Like LZH, the
waveforms of the five events are similar to one another. For some events, we can also clearly
identify the PcP arrival.

To accurately measure the differential arrival times we used a waveform cross-correlation

technique. Cross-correlation analysis either in the frequency domain (e.g., Poupinet et al.,
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Table 2: Distances and Azimuths From JVE Event to Stations

Station Distance Azimuth (deg.
(deg)  c.w. from N)

ANTO 33.5 -89.4
BJI 27.9 96.2
COL 59.7 20.9

GBAR 36.3 -177.7

GRFO 42.1 -63.1
HIA 26.2 75.4
KMI 30.9 134.4

KONO 39.2 -48.4
LZH 22.7 117.8

YKAR 67.1 6.6

1984, Ito, 1985; Fremont and Malone, 1987; Moriya et al., 1994) or in the time domain (e.g.,
Frankel, 1982; Pechmann and Kanamori, 1982; Phillips et al., 1992; Deichmann and Garcia-
Fernandez, 1992; Rodi et al., 1993; Li et al, 1995) have been developed to quantitatively
characterize the degree of similarity of seismic waveforms from a cluster of earthquakes close in
space and to measure their differential arrival times in an accurate, objective, and consistent
manner. The conventional time domain analysis typically enables arrivals times to be read,
at best, to an accuracy of one sample interval, while the cross-spectral method (Poupinet et
al., 1984, Ito, 1985, 1990) and interpolation techniques in the time domain (Deichmann and
Garcia-Fernandez, 1992; Li et al., 1995) can improve the timing precision to between 0,1 and
0.5 sampling intervals. For our data set used here, the accuracy of differential arrival time
measurements typically ranges from 0.01 to 0.02 seconds.

Figure 6 is an example of the waveform cross-correlation analysis procedure. The top frame
of Figure 6 shows three vertical P waveforms of three Balapan explosions recorded at station
BJI. The epicentral distance and azimuth are 28 and 96 degrees, respectively. The waveforms
are aligned by the origin times published by the NEIC/USGS (1987, 1988). We used the JVE
explosion (event 94) as a master event and explosions 85 and 86 (Table 1) as slave events.
The cross-correlation function between a master and a slave event was calculated for a P wave
window to measure the differential arrival time between events, as inferred from the time lag
between the maximum peaks of the auto- and cross-correlation functions. The P wave window

length used here is 6 s. The bottom frame of Figure 6 shows the cross-correlation functions for
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events 85 and 86, as well as the auto-correlation function for event 94. The peak correlation

values are 0.95 and 0.9 for events 85 and 86, respectively, suggesting that the slave events (85,

86) are indeed located very close to the master event 94. The differential arrival times relative
. to event 94 are 0.475 and -0.245 s for events 85 and 86, respectively.

Figure 7 shows the analogous waveform correlation results for station ANTO, which has an
epicentral distance of 34 degrees and an azimuthal of 271 degrees from the test site. The top
frame of Figure 7 shows the vertical component P waveforms for events 85, 86 and 94, while
the cross-correlation and auto-correlation functions are depicted in the bottom frame of Figure
7. The P wave window length used here is 6 s. The cross-correlation coefficients are again very
high, 0.92 to 0.94, and differential P wave arrival times are measured to be about -0.475 and
0.36 s for events 85 and 86, respectively, relative to event 94.

We also calculated the cross-correlation functions for PcP waves at some stations. Three
vertical component seismograms showing both P and PcP waves recorded at station ANTO
(distance = 34 degrees, azimuth = 271 degrees) are shown on the top frame of Figure 8. Using
a 6 second window around the PcP wave, we calculated the cross-correlation functions for events
85 and 86 and the auto-correlation function for event 94 (bottom frame of Figure 8). The cross-
correlation coefficients are 0.8 and 0.72 for events 85 and 86, respectively. Using event 94 as a
reference, the PcP differential arrival times are measured to be -0.175 s and 0.165 s for events
85 and 86, respectively.

Table 3 lists all the differential times that were determined together with their estimated
accuracies (o). Figure 9 summarizes the results of the waveform correlation analysis (Figures
6 to 8). The top and middle frames of Figure 9 are results for P waves. Two stations BJI and
ANTO have a similar epicentral distance, but with an azimuth difference of about 174 degrees
they are in opposite directions from the events. For event 85, the P wave differential time is
0.475 s at station BJI and -0.475 s at station ANTO, indicating the event is closer than the
master (94) to station ANTO and farther away from station BJI. This observation agrees with
the determination by Thurber et al.(1993), based on satellite imaging, that event 85 is located
about 5 km west of event 94 (Figure 2). In contrast, for event 86, the P wave differential time
is -0.245 s at station BJI and 0.36 s at station ANTO, indicating that this event is east of event
94, which is also consistent with Thurber et al. (1993).
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Table 3: Differential Arrival Times Relative to JVE Event
Station Phase Slave Event Time (s) o (s)

ANTO P 85 -0.475  0.025
ANTO PcP 85 -0.175  0.03
ANTO P 86 0.360  0.01
ANTO PcP 86 0.165 0.015
BJI P 85 0.475 0.01
BJI P 86 -0.245 0.01
BJI P 88 0.290 0.01
BJI P 89 0.765 0.015
COL P 85 -0.365 0.015
COL PcP 85 -0.360  0.01
COL P 86 -0.250 0.01
COL PcP 86 -0.215 0.015
COL P 88 -0.565 0.015
COL PcP 88 -0.520  0.02
GBAR P 85 0.660  0.01
GBAR PcP 85 0.340 0.01
GBAR P 86 0.315 0.015
GBAR PcP 86 0.315 0.015
GBAR P 88 1.000 0.015
GBAR PcP 88 0.480  0.02
GBAR P 89 0.120 0.02
GBAR PcP 89 0.060 0.01
GRFO P 85 -0.680  0.02
GRFO P 86 0.330 0.02
GRFO P 88 -0.410 0.01
GRFO P 89 -0.345 0.01
HIA P 85 0.262  0.02
HIA PcP 85 0.075  0.01
HIA P 86 -0.275 0.015
HIA PcP 86 -0.050  0.01
HIA P 88 0.063 0.015
HIA PcP 88 0.060 0.01
HIA P 89 0.775 0.015
HIA PcP 89 0.350 0.01
KMI p 85 0.600 0.01
KMI P 86 -0.112  0.015
KMI P 88 0.690 0.01
KMI P 89 0.425 0.05
KONO P 85 -0.770  0.02
KONO P 86 0.270  0.02
KONO P 88 -0.515 0.015
LZH P 85 0.685 0.015
LZH P 86 -0.260  0.01
LZH P 88 0.650  0.01
LzH P 89 0.715  0.01
YKAR P 89 0.360  0.01
YKAR PcP 89 0.285 0.015
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Table 4: Locations of Five Presumed Underground Nuclear Explosions Determined from Dif-
ferential Arrival Times

Event Latitude Longitude North (km)  East (km)

85 49.9574 78.7591 8.8 -4.6
86 49.9050 78.8874 3.0 4.5
88 49.9786 78.8052 11.2 -1.3
89 49.8601 78.7117 -2.0 -8.0
94 49.8781 78.8239 0.0 0.0

Table 5: 90% Confidence Ellipses on Locations Relative to Event 94

Strike (deg  Semi-major Semi-minor

Event c.w. from N)  azis (km) azis (km)

85 42 1.3 1.1
86 18 1.4 0.9
88 31 1.6 0.9
89 30 1.7 1.0

RELOCATION RESULTS AND CONCLUSIONS

We applied our multiple event location algorithm (Rodi et al., 1994) to the differential arrival
time data listed in Table 3. The epicenters and origin times of the four slave events (85, 86,
88, 89) were fit to the data in a weighted least squares sense. The epicenter and origin time of
event 94 were fixed to the values given in Table 1 (Thurber et al., 1993; NEIC/USGS, 19987,
1988). The depths of all events were constrained to the earth’s surface. The forward model for
traveltimes was computed from the TASP91 tables, retrieved from the Center for Monitoring
Research in Arlington, Virginia. Our relocated epicenters are listed in Table 4 and plotted in
Figure 10.

The final residuals of fit to the differential arrival time data averaged 5.4 standard deviations.
Allowing for degrees of freedom, this implies posterior estimates of the data standard deviations
equal to 6.2 times the assumed (prior) standard deviations shown in Table 3. We attribute the
large residuals to two major causes. First, the events were fixed to a common depth while
the true depths of the events vary. Second, the IASP91 traveltime tables do not reflect the

relatively lower velocity layers at shallower depths at the IXTS site (Priestley et al., 1988; Li

33




and Thurber, 1991; Quin and Thurber, 199ﬁ2.'); nor do they reflect lateral velocity variations at
the site.

Figure 10 compares our locations (stars) with the NEIC/USGS locations (octagons) and
satellite locations of Thurber et al. (1993) (squares). The USGS locations have been shifted
so as to align event 94 with its satellite location. Our location for event 94 coincides with the
satellite location as a constraint. We see that our locations for the remaining four events are
within 2 to 3 km of the satellite locations of Thurber et al. (1993). Our location for event 85 is
compafable to the NEIC location for this event, but for the other three events (86, 88 and 89)
our locations are better than the NEIC locations, with mislocations reduced by factors of about
2 to 5. We also note that if we had used more accurate traveltime tables, allowing for slower
shallow velocities, our pattern of locations would shrink and its agreement with the satellite
image locations would improve slightly. In Table 5 we list the formal confidence ellipses for
the location of each slave event relative to the location of the JVE event (94). (These error
estimates include the posterior variance factor.) We see that the 90% confidence ellipses have
semi-axes of about 1 and 1.5 km, which is about half of the actual location errors.

We conclude from these results that a relative event location method applied to differential
P and PcP arrival times at a small number of far-regional and teleseismic stations yields relative
location accuracies for explosions as good as, or better, than conventional locations obtained
with hundrededs of arrival time picks from a large network of globally distributed stations.
The reason for this is that the waveforms of explosions differing in location by only several
kilometers are very similar, allowing the measurement of highly accurate arrival time differences
between events using cross-correlation techniques. Therefore, waveform analysis and relative

event location methods can be valuable assets for nuclear monitoring and discrimination.
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Figure 1: World map showing the locations of five presumed nuclear explosions (octagons) in
Balapan, Kazakhstan test site (KTS) and ten seismic stations (triangles) with epicentral

distances ranging from 23 to 67 degrees.
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Figure 2: Map of Kazakhstan test site (KTS) showing relative locations of five presumed nuclear
explosions determined by Thurber, Quin and Richards (1993) using a satellite imaging

technique (squares), and by the USGS with hundreds of arrival time picks (octagons).
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Figure 3: Short-period, vertical component seismograms of the 14 September 1988 Joint Veri-
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far-regional and teleseismic distances.
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Figure 6: Top frame: P waves on vertical component seismograms of three explosions at KTS

recorded at station BJL. Bottom frame: P wave cross-correlation functions for events 85 and
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Figure 9: Comparison of cross-correlation functions at different stations and calculated with
different phases. Top frame: P wave cross-correlation functions calculated for events 85 and
86 at station BJI. Middle frame: P wave cross-correlation functions calculated for events
85 and 86 at station ANTO. Note the differences between the P wave differential arrival
times for the same event at different stations. Bottom frame: PcP wave cross-correlation

functions calculated for events 85 and 86 at station ANTO.
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ABSTRACT

A new method, which we name Spherical Mapping Approzimation (SMA), is de-
veloped for the evaluation of displacement fields of body waves and surface waves
from explosions in non-spherical cavities embedded in elastic media.

Under SMA, the explosion-generated stress distribution on the surface of an arbi-
trary cavity is mapped onto the surface of an equivalent virtual spherical cavity having
the volume of the true cavity. The analytical results express the displacement field in
terms of a multipole double-sum expansion of spherical eigenvectors with coefficients
in the form of a finite Legendre transform of the components of the normal vector of

the cavity boundary. These ‘cavity integrals’ can be evaluated exactly for spheroidal
and cyllindrical inclusions.

In the long-wave far-field approximation, symmetric finite cavities are shown to
be equivalent to a linear combination of point dipoles directed along the principal
cavity-axes. The ensuing radiation patterns yield, in general, 4-lobe patterns for S-
waves, two-lobe patterns for P-waves and single to two-lobe Rayleigh-wave patterns,
independent of the details of the cavities’ shape. However, all radiation patterns

are modulated by a frequency-dependent 'cavity-factor’ that embodies the boundary
conditions on the cavity surface.

Moreover, it is shown that the radiation pattern for P-waves from a non-spherical
symmetrical cavity in the long-wave far-field approximation is always dipolar. Since
the radiation pattern of radiated P-waves from a standard earthquake is always
quadrupolar, the cavity explosion behaves like a non double-couple earthquake. Thus,
the examination of the deviatoric moment tensor of a given seismic event enables one,
in principle, to state whether it is a standard earthquake or perhaps (if the S-wave
pattern is quadrupolar) an evasion of the test-ban treaty.

Displacement patterns for body and surface waves are calculated for spheroidal
and cylindrical cavities for a wide range of aspect ratios and corresponding aperture
angles, exhibiting the whole range of cavity shapes from a line source to a disc. The
moments of the equivalent dipoles are shown to depend on the corresponding cavity-

integrals, the elastic constants of the medium in the neighborhood of the source, and
the initial energy injection.

All non-spherical cavities generate strong shear-waves, except for special aperture
angles at which a spherical P-wave is generated, unaccompanied by S-waves.

The wave-spectra of body waves (surface waves) exhibit a corner-frequency (peak
frequency) at a wavelength equal to the radius of the equivalent sphere. This enables
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one to deduce the size of the cavity from the spectrum of its far-field displacement

signals. provided that the explosion is fully decoupled and that the interaction of the
shock wave with the medium occurred in the elastic regime.

The results of the present research are applicable to the detection and identifica-
tion of seismic signals from clandestine underground nuclear explosions.

1. Introduction

The advent of testing underground nuclear explosions during 1957-1966 gave
rise to intensive research efforts on the sub ject of seismic wave radiation from ex-
plosions in spherical cavities. The concept that it might be possible to significantly
reduce the radiated seismic signal by detonating the device in a cavity (known as
decoupiing), was first proposed publicly by A.L. Latter at the 1959 Nuclear Test
Ban Conference in Geneva (Latter et al., 1961). The possibility of concealing nu-
clear explosions then became a vital issue In connection with the test-ban treaty,

and its importance has presently increased due to the new treaty to be signed and
ratified internationally in 1996.

In spite of the existence of a vast literature of the subject of decoupling [Lat-
ter et al., 1959; Latter et al., 1961a,b; Haskell, 1961; Herbst et al., 1961; Patter-
son, 1966; Springer, 1966; Werth and Randolph, 1966; Rogers, 1966; Lewin and
Treiman, 1966; Rawson et al., 1966; Haskell, 1967; Springer ct al., 1968; King et
al., 1989; Stevens et al., 1991; Adushkin et al., 1993; Florence and Miller, 1993;

Glenn, 1993}, a number of major issues of importance w.r.t. seismic monitoring
still remain unsolved.

Elastodynamical problems associated with spheres and spherical cavities were
solved throughout the 19t# century by many mathematical physicists (Love, 1927).
However, the first application of a problem of this type to scismology was made
only in 1942 by Sharpe; he gave explicit expressions for the time-domain ground

displacements produced by chemical explosion pressurein a finite cavity embedded
in an unbounded elastic solid.

Sharpe’s solution assumes total spherical symmetry of the source and the

medium. It therefore predicts a radial displacement everywhere and the absence
of shear waves.

However. seismograms produced by underground nuclear explosions are con-
siderably more complicated than what one would expect from Sharpe’s simple
model (e.g. Tokséz et al., 1964; Johnson, 1988; Taylor ct al., 1991)

Numerous attempts were made during the past four decades to account for

-49 —




these observations in terms of media complezities (inhomogeneity, anisotropy, pre-
stress, nonlinearity) or source complezities (asphericity, spall). But a serious at-
tempts to extend Sharpe’s analytical solution beyond that of a spherical cavity was
lacking. For this reason, all scaling laws used to date (King ¢t al., 1989; Stevens et
al., 1991; Adushkin et al., 1993; Florence and Miller, 1993) to cstimate the yield
of nuclear explosions from the seismic data are still based on a modification of
Sharpe’s solution given by Haskell (1961, 1967).

In surveying the literature on the subject since 1942, we could discern two
main avenues of approach:

I. Helmholtz-type integral formulas: These illustrate Huygen’s principle for
the two wave fronts of the elastic wave field via a vector Green’s theorem. It
is known also as the ‘Representation Theorem’ (Ben-Menahem and Singh, 1981,
p- 174) and states that the displacement field @ outside the source region is given
by two surface integrals over the confining cavity S

—

1) = [ F&) G184 - [a@aé)r (81 9)as@. @
S S

Here £ are source-coordinates, 5(5 ) is the outward unit normal vector to S, F(€) =

- L d R d
n(€) - T (@) is the normal traction vector, dS is the surface arca element, G (7] €

> —
is the Green'’s tensor for the elastic medium (finite or infinite), T (@) = A I divad +

—r

3
u(VZ + 4V) is the stress dyadic, while T is a stress tryadic (third rank Green'’s
stress tensor). It is given explicitly in either index-free or indicial form

3 .= & e - o e o
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where 0, = %

Since I:".(E) is usually given and 8 is known, the first integral of (1) can be
evaluated, analytically or numerically, on S. The second integral, requires the
preknowledge of the displacements on S. Since in most cases, this function is
apriori unknown, it must be first calculated from (1) itsclf, acting to this end
as an integral equation for @ on S. This drawback, apart from the nontrivial
integration over S, makes this approach quite tedious.

Varadan (1976), mitigated the hardships of the integral-formula approach by
applying to it the method of eigenfunction-expansion, well-known from the theory

- 3
of integral equations (e.g. Kondon, 1991). He expands F(£), @, ‘5, and T(G) in




terms of a spherical eigenvector base, and solves for the unknown coefficients of
the expansion of the displacements @(7). An infinite matrix is involved, but in
many cases good accuracy can be obtained with a truncated matrix of 60 x GO.

Glenn et al. (1985) and Rial and Moran (1986) solved (1) numerically for the
surface displacement over a spheroid. A finite element code was used to compute
the displacement on the cavity surface and then (1) was used again to find the
displacements in the far-field. No analytic solution was given. But the singular
nature of the integral, when the observer point is on the surface, makes it difficult to
apply this scheme to arbitrary cavity geometries. Also, the finite-clement solution
1s computationally inefficient for direct calculation of the far-field.

Stevens et al. (1991) reported non-analytic finite difference simulations of
partially-coupled explosions in an ellipsoidal cavity having an aspect ratio of 4 to
1. Since their report includes no visible mathematics, except for a flat statement
that they have integrated Eq. (1) numerically in the time domain for the far-field,
a straightforward evaluation of their results is not fcasible.

II. Boundary-value solutions for non-spherical configuration: Hecelan
(1953) has tried to solve the problem of radiation from a cylindrical cavity in an
isotropic infinite elastic space. He assumed a cylindrical hole of infinite length with
a prescribed stress applied to a finite length of its wall, which is not a cavity. But
even so, his solution is plagued with serious analytical inaccuracics (Abo-Zena,
1977; Usami and Hirono, 1956). Hazebroek (1966) considered a special case of
a finite line source given as a limit of a narrow clongated ellipsoid of revolution
whose minor axis tends to zero. The interior surface of this ellipsoid is subjected
to a pressure which is a given function of the time only. It was concluded that the
shape and magnitude of the compressional waves were independent of direction
and that the magnitude of the shear wave is maximum at an angle of 45° to the
direction of the line source.

Usami and Hirono (1956) and Usami (1958) considered the elastic wave gen-
erated from prolate and oblate spheroidal cavities whose walls were subjected to
normal harmonic stress. The above authors used spheroidal coordinates from the
start, and their solution is therefore expressed in terms of the spheroidal Baer
eigenfunctions (Moon and Spencer, 1971) which arc eventually expanded in terms
of spherical Bessel functions. Their numerical calculations revealed for the ratio

__ [ radiation’s wavelengths to bl , e c e oy
d={ Source’s Tength } ~ 3, a 4-lobe radiation pattern for compressional waves

in the far-field.

Zhao and Harkrider (1992) gave an analytic formulation for the wave fields
from an off-center explosion in an embedded solid sphere in an elastic whole-space.
Their calculations show that the degree of shear-wave generation is determined by
the asymmetry of the source region. The radiation patterns at different periods
for different parameters of the media suggest that the asymmetry of the source
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region has significant effects on spectral components with the ratio d < 7. Their
model was intended to simulate a tamped nuclear explosion.

A more realistic model of an underground nuclear explosion in a preexisting
cavity requires the presence of a stress-free planar boundary to accommodate for
the earth’s surface. Analytically, this problem is of a higher degree of complexity
since it involves the simultaneous use of two different coordinate system — the
spherical and the cylindrical.

The first attempt to solve this difficult problcmn is due to Ben-Menahem and
Cisternas (1963), who used the ‘Erdelyi Integral Formula’ to transform the elastic
fields between the two said coordinates. The convergence of their solution was later
established by Thiruvenkatachar and Viswanathan (1965) and Gregory (1967).

The present paper offers a new simplified approach which is especially suit-
able to the physical conditions prevailing in underground nuclear explosions. The
basic assumption (supported by observations over the past forty ycars) states that
irrespective of the shape of the cavity or the point at which explosive device is
placed in it — the direction of pressure on its walls is always normal to the walls
at every point, such that there is no initial tangential force. The pressure on the
walls is activated practically simultaneously at all points of the boundary.

We analyze comparatively three typical situations, listed in increasing order
of complexity (Fig. 1):

(a) Source at the center of a spherical cavity. The initial traction vector on the
wall is radial and uniform at all points. No shear waves arc produced in the
outside homogeneous elastic medium at any time (Fig. 1la).

(b) Source is at the center of a spheroidal cavity (Fig. 1b). Since the normal
is not in the radial direction from the center, shear waves arc produced ab
initio in the elastic medium. One can then simulate the problem in terms of
a mapping of the stress distribution on the surface of an equivalent virtual
spherical cavity. Details of this process are given in Scction 2.

(¢) A stress-free planar boundary is introduced to model an underground explo-
sion in a tunnel whose major axis is parallel to the free swrface (Fig. 1c).

With this step accomplished, the source-field of an oblate spheroid in an in-
finite medium is obtained!. The second step included the integral transformation
of the spherical eigenvectors into cylindrical eigenvectors, appropriate for the new
boundary conditions needed over the planar boundary. Once the boundary condi-
tions are stated, the residues at the poles of the integral expressions are evaluated
in order to obtain a closed-form expressions for the Rayleigh wave ficld.

The results of the above cases are calculated and exhibited in graphical form

L By ‘oblate’ we mean here that the cavity has a horizontal axis of symmetry.




which emphasize the dependence of the field on the explosion geometry and source
frequency. The shape of the cavity strongly affect the ensuing radiation patterns.

The new idea of the equivalent spherical cavity is very helpful in bringing
about the essential features of the resulting elastodynamic ficld that is transmitted
outwards from the cavity. Clearly, we are not able to quantify the entire complex
physical process of an underground nuclear explosion, due to lack of measurements
in the cavity and its adjacent neighborhood during the first few milliseconds or
so after the explosion. But practically we are interested only in that tiny fraction
of energy that is converted into seismic waves. Since the boundary conditions
associated with this conversion are only vaguely known, there is no sense in being
too exact in the mathematical elastic model. Thus, instead of giving an exact
mathematical solution to an approximate physical situation, we prefer to give an
approximate mathematical solution to an equivalent physical model, which we
have precisely formulated.

2. The Spherical Mapping Approximation

Consider first a spherical cavity of radius 7 = rg that is subjected to a pre-
scribed distribution of stresses on its inner wall. To establish the displacement
field & at an observation point 7 outside the cavity we assume an expansion of the
field in terms of the Hansen spherical eigenvectors (Appendix A),

u(r) = Z[amiﬁ,;g(ksr) + ﬂmlﬁn_uf(ksr) + Alm(’-i,—,-‘[(k])")]a (3)
m,£
where kp, = v—“;, ks = = and w is the angular frequency. Let the boundary

conditions at the surface of the cavity be

T(@) = Fl6,9) at r=rp. (4)

—
where €; is a unit vector in the direction of increasing r, and T (@) = M divd +
w(Vu + ©V) is the stress dyadic in a medium having the Lamé cocfficients A, p.
Since Fis known, it can be expanded into a serics of vector spherical harmonics

{ng,Bmg, mg} with determinable coefficients {amﬂ,dmc, mf} (Ben-Menahem
and Singh, 1981, pp. 221-222)

F‘(o,cp) = Z[ TAY €+ 1 Cmé +ﬁm£Pm( + ,m(\/ C+1 Bmﬂ] (5)

m,{

The explicit expressions for the vectors {M Vs L

given in Appendix A.

7\7.;.

+ c .
mer = m m(} and {pmé, mfa mC} 18




Inserting @ from (3) into (4), straightforward calculations lead to the explicit

expressions for the unknown displacement coefficients in terms of the known stress
distribution

a? 1
mé
o = 6
™7 ks XFra(X) ©
5, = 1 BLeFe1(¢) — v Fra(¢) )
mé — /J.ks Ag )
1 —BeFea(x) + 20+ Vv, Fea ()
Yme — 2/1kp A ,
where
X = ksTO, C = kPrO» W
Ag = 2L(E+ 1)F1(x)Fe,1(¢) — Fr () Ees(C),
E—1 (2 1. (2
Fya(a) = —5=hy ) (2) = Zhi}) (@),
2 2 2 8
Fyo(z) = [‘1:—2(52—1)—1}h§ )(:1:) _]'(C-{—)l( v), (8)
. 1 1/a\? ¢ A
ng3(11:) = [;8(3 -1) - 5 (E) ]h%z)(;‘l ) + —]'Ej—)l( ),
hg2) = spherical Hankel function of the sccond kind. )

The above analysis can be applied to model an explosion in a preexisting cavity;
whatever the geometrical shape of the cavity, thic explosion gas is assumed to
exert on its walls a uniform pressure equal to pg(w)i7, where 77 is a unit normal
to any given point and pg(w) is the Fourier transform of the time-dependence of
the initial stress-pulse. In the case of a sphere 7 = & is the unit radial vector
in spherical coordinates. In the general case @ = VS/|VS], where S(z,y,z) =0
is the equation of the cavities’ surface. Because the boundary conditions require
that the normal stress Fj, at the surface of the cavity he equal to the negative of
the applied pressure, we write

Ea[r(8,9):8,0]], = —po(w)@

(9)
= —po(w)[£(8,9)Er + g8, 2)F + (6, 0)é],

where {r, 8, ¢} are the spherical coordinates of a poiut on S (Fig. 1), and {f,g,h}
depend on the geometry of the surface S. Since the surface of the cavity after the
explosion does not remain intact due to non-elastic deformations, the physics of
the problem can accommodate a mathematical simplification: instcad of applying
the boundary conditions on the aspherical cavity, we map them on the walls of
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a wvirtual spherical cavity which has the same volurne as the real cavity. The
geometry of the original cavity still enters via the angular dependence of 7.

With this provision, the mathematical apparatus expounded m (1)-(7) can
be applied directly. Since in nuclear explosions the distances involved in changing
from S to the sphere r = r( are of the order of a few meters only, the travel-time
error incurred will be of the order of a few milliseconds, which is totally negligible.
Hence, we are able to avoid the use of horrendous integrations over aspherical
surfaces as required by other methods (e.g. Varatharajulu and Pao, 1976).

Let S(r,0,¢;€) = 0 represent a smooth surface in three dimensional Euclidean
space, where (r, 8, ¢) are the spherical coordinates of a general point of S relative to
some origin (usually chosen inside S) and 0 < € < 1 is a dimensionless geometrical
parameter. We shall assume that the components of V.5, together with their first

and second derivatives are continuous functions of 8 and ¢ in the range 0 < 8 < m,
0 < <2m.

The explicit expression for the normal to S is

= 1_% = [0, 0, + 96,03 €)5 -+ 1.5 ), (10)
where
108 1 0§ 1 0§
f:Z—é;’ I= Aroe’ 'e Arsing 0o’

aS\2 1 /085\? 1 a5\ 411/? (11)
2= (%) +2(%) tmmm(E) |

For a given surface S, such that (f,g,h) together with their first and second
derivatives are continuous functions of § and ¢ over the entire range of (8,9), we
may seek an expansion of the vector normal 7 in terins of the wector spherical
harmonics (Appendix A)

o 14
n= Z Z [fml ﬁm[ + ImeV €(€+ 1)§m€ + th V C((' +1) C:m(]~ (12)

~L=0m=-¢

Using the orthogonality relations of the scalar sphierical harmonices. the coefficients
{fmes 9me, hme} are explicitly recoverable in terms of the known functions {f, g, h}

20+1(0— 1
— 7“. -1 S 16’ 13
fme r ((+m /dc,o/f(G Lp,e){ (cos B)e } sin fc (13)

A+ (b-m r 1
Ime = 4ml(€+ 1) ( E—}-m)'/d(p/{ (0, p5¢ +sm (6. 7/'6)0 }
0




X {Pgm(cos9) —im‘p}sinGdG (14)

: 20+1 . 2
1 hme = 47r£(£+1)(€+m / /{sm@g( R _—]L(Q’Q’E)OG}

x {P*(cosf)e” ""‘P}sm9d9. (15)

In the special case of azimuthally-symmetric surfaces [

=0, h= 0] , the above
results simplify to

2

fe= 2€+1 /f(9 @; €)Py(cos 8) sin 6d4, (16)
2041 5
T2 +1) 1¢)5g sin 66, ¢>1, 17
9t 2€(£+1)/9(6’9915)6913[((:059)81119( > (17)
0
go = 0.

Applying the stress distribution given in (9)-(10) to (G), using (6)-(8), we find by
comparison, for all values of £ and m

ﬂ?nl = _pO(w)fmb 721[ = —pO(w)gmb C\l?nc = —'p()(w)/"'lnfr' (18)

The final expressions for the respective compressional () and shear () displace-
ment fields at locations r > rg, are obtained via (3)-(8)

Fyo(ksro) — 2008 + 1)g,ncFo 1(kst) =
z’[,,(F;w):pO(w)mee 2 .2(ksTo) (L4 1)g,cFe1(ksro)

L= (kpr), (19)
3 m T
oo _po(w) [ _
Ug(riw) = I»I)
) e 2 Tt T

fmlFll(kPTO); gmeFe3(kpro J\T;Lc(/cs'r)]. (20)
£

For azimuthally-symmetric surfaces, (19)-(20) degencrate into the simpler form

4 F sT F, kgr
B = 2 5 [f() L2 e+ gt 2

2ekp (g 74,. A
x Lg,(kpro), (21)
L oo w el(k r) Fys(kpr)
Us(7,w) = —&k) > [f( y——F— — gc(f)—'A—l
HEs 4024, ¢
x Ngy(ksr), (22)
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]

where 1\_7‘0—0(1357') =0.

The above equations are recastable in the explicit component-form:

P-waves:
Up = ZAg (ksro; €)Pp(cos 8) lz( {kpr)
#kp
(23)
o )apg(cosé’) 115 )(/\Tp"')
Uug sT0, € 50 kp'r .
S-waves:
po(w) /( ns
Up = — #kp ZBg prg,e)€(£+ 1)Pg(c0s6 _T,I_
(2) (24)
_ po(w) o 0Pe(cos 9) T he ' (kgr)
o = =D S Bulkpros ) g 1P kg +
where
Fyo(ksro) Fp i (ksro) o
Ag(ksrose) = fo (G)T -+ UM”T’ (25)
Fl,l( 7'0) F(’,H(]"p"'()) ky
By(kpro;e) = [fe(é)—““A—:— - ge(f)T ]—:- (26)

For a spherical cavity g, = 0, f; = &g and (21)—(22) reduce to the well known
result (Ben-Menahem and Singh, 1981, p. 222):

- pow) 1 & .
Up = — Ly (kpr),
P Zﬂkp Fo,g(kpro) 0‘0( P

iy = 0. (27)

This expression can also be recast in the more explicit form

. ciw(t=(r/vp)) po(w)a
Up(F,w) = — grad — T 5
r 4p <y T ewg — LUZ_T/‘Z‘L (28)

LBl

= —grad ¥,

3 3 .
where ¥(t — o0) = U(w — 0) = B g = %ﬁ and u(t — o) = ]l’;’l% (static

dur
deformation field).




3. Application to Realistic Cavity Shapes

We next apply our ideas to the simplest departure from a spherc that is
adequate to model underground tunnels. A spheroidal cavity with semi-major
axis ¢ (directed along the z axis) and semi-minor axes cqual to a is surrounded
by an infinite homogeneous and isotropic elastic solid with Lamé coefficients A, u,

density p and a Poisson ratio o. The origin of the coordinates coincides with the
spheroid’s center (Fig. 2

Let the spheroidal surface be given by the equation
1,9 o 1, 59
5(33,%2):?(-’5 +y)+;§3 -1=0, ("‘ )
where ¢ > a is the major semi-axis, and (z,y, z) arc the cartesian coordinates of
any point P on the surface. The normal at the surface is given by the unit vector

n = VS/|VS|. Expressing this vector in spherical coordinates at P (r,6,9), we
obtain, after simple analysis

— — — a - y
i=&f(6ie) +&g(fe)y e=-<1  fitgi=1, (30)
where (€&, €p, €,) are unit vectors in the spherical systenn. and

—(1-¢ c0529 (1 —€e*)sinbcosb
\/1——(1 €*) cos 6’ \/1—-(1—6 ) cos¢ 0

(31)

According to (16)—(17), the explicit expression for the cocfficients fp and gp will
be of the form of finite Legendre transforms

us

— 1-(1-¢%)cos? . 5
fe (£+ )({\/1 = COSZGPK(COSG)SIIIH(J{), (32)

go = — e+1 (1 — €?)sinfcos b
= £(£+1)0 V1—(1—¢*)cos? 8

Py(cos)sin? 046, gy =0, (33)

where prime indicates differentiation w.r.t. (cos#).

Both integrals vanish for odd values of £. It is shown in Appendix B that f,
and gy can be represented as a finite sum of integrals of the type

/2

I = / cos? €de, (34)
€o




where j is an integer and cosfy = V1 — €. This integral is given explicitly by
Gradshteyn and Ryzhik (p. 131)

Y — 1\ 1 .

2

4 -~

(35)

j—-1 . . .

27 —=1)(27 —3)--- (27 — 2 1 95

+Z(J )(J, ) (_J ¢ +1) 2= e,
= 2 -1 -9

Hence, the coefficients f; and g, can be calculated as finite double sums. Once

these are ready, the displacements at r > ¢ are a special case of (19)-(20).

The expressions for 4, and @ are then those given in (21)-(22) with ¢ terma-
nating at some even finite value.

Our second example is that of a right circular cylinder of length H and radius
R. Denoting 8y = tan~! (%{?), the normal to the surface is given by i1 = fé, + gép,
with

cosf 0< 8 <8
f=< sinf fh<f<r—"6

L-—cosQ T—G<f<7
(36)
(—sinf 0<8<6

g= cosf fy<f<m—0

L sinf w—60yp< <

At the points 8§ = 8y, m — 6y the normal is not defined. According to (16)-(17),
the coefficients f; and g, are explicitly given by the integrals:

bo
Y4
fe=(20+ 1)[#] [/ Py(cos 8) sin b cos 8df
B 0
. w2
+ / Py(cos 6) sin? 9d0], (37)
bo
20 L+ (o[ T
g = D { 5 ] [/ Py(cos ) sin” 6d6
0
w/2 ,
— | Pl(cos8)sin? 8 cos 6d6 9 (38)
¢ ’ Ocosb )’
bo
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Here, again, only the even ¢-values contribute to the sum. It is also shown in
Appendix B that the first integrals in (37) and(38) can be evaluated analytically,
while the remaining two can be reduced to finite sums of intcgrals of the type Iy; =

f&:/ 2 cos? £d€, already discussed in the previous example. Thercfore, the integrals
of fy and gy reduce here too to an evaluation of finite double suims (Appendix B).

4. The Long-Wave Approximation and the Corresponding Source
Moment Tensor

In cases where the radius of the cavity is smaller than the radiation’s wave-
length such that k,rg < 1, ksrg < 1, we put

(2) _ 1 €y crop 1N 1 1 1 _1_
he (z) = (2¢ + 1)!!$ +i(20 - it zé+l + 2(2¢ — 1) ot +0 xlt=3 )’ (39)

and deduce from (8) the suitable approximations for ( = (), 2:

e

FO,l(I) = -—27:2:~3 —l‘_2 +oee
Fyo(z) = —2z 2 iz ...
Fp1=—-12iz7° —ig™3 4+ ... |
Fyo(z) = 48iz™> + 3iz ™3 + ... | (40)
= y —.3 — ia '—l ...
Fo3(z) = 2iz [1 = 20] a7+ ,
1-50 :
-— y _5 ) '—'5 “ e
ngg(z:) = 36:z7° +2 [1 — QU] 77+ .
where o is the Poisson ratio. Using these results we obtain the approximations
41 12 7-5
Ag = ——s, Ag=———17°7
x2y3 x:}y.) 1—0 (41)

r = kSTO, y = kpro.
In general, for £ > 0

Fato)~mifie Sl L
Fya(z) ~ i[2€(£+2)———-——(2i;;)” + (€2 - 1)(2i;?)”] (2(‘: ”2((,2 - 1), )
Fe,a(m)~i{(€+1)(€+2)(2i;;)” + [W; b _ (’(12:0”] (2(;,,;?)”} ]
-2
+ @—Zme(e— 1),
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22— )2 =W (2 4 (+1)—a(2 +1
Az, y) ~ - EF 2R RO+ (4 1) =20+ 1)

y£+3$£+1 1—0 ) (43)
The corresponding values of 4; and By [Egs. (25)-(26)] for ( < 3. arc

Fyo(ksro 1 :
Ag = I"o’?_(A(S)--Z = Zfo(kp"o)"\
Fy 9(ksro) F5 1 (ksro)
Ao = —_ . 12y
2= fo 58, g2 58,
= ~i(f2 + 3g2) =2 L (kpro)” (44)
2 g2 7 _ 50_ 21»3 vp 0 bl
F2 l(kPTO) F‘Z 3(/"p7'0) "'p
By = : _ g2 i
2= |f2 A, g2 ’.A'Z s

) 1—-0c [k .
=1(f2 + 392)7 5 (f) (ksro)™.
S

When this approximation is applied to the expression of the general displacement
field resulting from an azimuthally-symmetric surface [Eqs. (21)-(22)], we obtain

. ) 1 — n ey {+1
lfi0) = B o) Eyyr) - TP 5 ey
=rp (=2.1,... - -

e[fe(e) + (€ + Dge(&)] \ (k2N -
* {(22 +0+1)—0o(204+1) } (E%)Lw““f” ),
' n NIV S |
Ug(Tyw) = —-M.—_U) (ksro)
pks e:%,,,_ (20 =31
fe(€) + (€4 1)ge(e) —
g {(32 +e+1)-0(20+1) }NOC("“’ )

For large values of £, the dependence of fy and ¢; on ( can be estimated from

(16) (17): since f and g are slowly varying functious of 8 relative to Pe(cos6) and
WPg(cos 6), respectively, it can be taken out of the integrals. leading to

(45)

s

fe~ £f(0,0;¢€) /P,g(cos ) sin 8d6 = 2(f,
. (46)
(€ +1)gg ~ g(8,0;¢) / %Pg cos@)sin 6dd = 0 (¢ even).
0
It is thus guaranteed that for ksrg < 1 contributions from suinmmands in (45) for

¢ > 2 will have small effects on both @, and as, irrespective of the specific shape
of the surface.




Note that if instead of the above argument we use the asymptotic form (Mag-
nus et al., 1966)

™m mpm—1/2 2 ‘1=
P (cos§) = (=)L ”ﬂ'sm9 51n[((+ >9+4(7m+1)} (47)

£>1, e<f<nm—c¢,

we shall obtain fp « —\/L—, (£ 4+ 1)ge —%, with a faster convergence rate than in
(46).

The termination of the sums in (45) at £ = 2, yiclds the approximation

] 2
- tpolw 1 - 8 l—0 =_
up = #I(c )(kpr0)3 [ZfoLoio(kpr) - 2(f2 + 3(/2)% T L5, (kpr)]
(48)
= Zpo(w) l1—0 ~_
Ug = — Py (ksr ) [f2+392]5_70,N0,2(ks7')-

Using the far-field approximation [(A-18)-(A-19)], (48) becowes

{ur}p = 2 :,(;:)(kz;ro):}{ifo +3(fy + 302)

2 —theyr

Vs l1—-0 2 1 ¢t
— 6 — - 49
% [vp] 7— 50 (cos 3)} lpr (49)

13po(w
{ugls = — QPO(, )(ksro) (f2 + 3(1z) £ sin26. (50)

It is useful to identify the displacement field in (48) with au cquivalent point force
system operating at the center of the cavity (Fig. 4). This can casily be achieved
when we write down the displacement fields due to three mutually perpendicular
dipoles with moments {M; = M3, M3} in the respective 2, y, = directions (Ben-
Menahem and Singh, 1981, pp. 203-205):

-, 1M k2 -
. M k2 - - . . .
2= 481 2 [v2(2Lo,0 +2Lo2 + L2,2) + (2Ng 2 + Nyp)). (51)
L iMyk? - .
iy = oL [ (080 0 + 2502 — Da2) + 2 Ng.s — Nao),
48w




The combined field {@3 + @ + @1} can be split iuto the following compressional

and shear fields

- 1 zkf ve\ ! =
Up(kpr) = —é(]\/fg + 2]\41)4 (—> Ly o)

T\ V)
+ (0 - My) s <_>' E5alhyr), (52)
Erp \ vp ‘
. k2
us(ksr) = (Ml - MB)mNOQ(/‘:ST)-

A complete agreement with (48) is obtained if we set the correspondence

My =M, = 329, [ fo 2k +3gz_)}’

i 2 . 1—2(3' 37)—50 (53)
My = 3= [0 (Ut D))
2 1 -2 [ — o0
47
wo = —-rgpo(w). (54)
Note that
91— o) >0 line source
M =My — M3 = — 3g9)———w 59
! 5 (f2+392) T—50 0} < 0 disc source, (55)

cannot assume arbitrary values under the physical conditions of our problem. To
see this, let us examine two limiting cases of special interest:

(I) A line-source is obtained in the limit £ = 1 for the spheroidal cavity or
8o = O for the cylindrical cavity. We assume that the source energy wyq is fized such
that in the limiting case wg = lim P [%Ergpo]. It is then found from (32)—(33)

and (37)-(38) that for both the spheroidal and cylindrical cavitics

T 57 o7

= = —— g = ——, 56
fO 4’ f2 39’ g2 39 ( )
Equations (52)—(53) then yield the limiting valucs

27 234 1

Ms = —Ewo = 0.23wqy, M} =My = 297m wy = 8wy, foro = -,
368 368 4 (57)

1 : 1

M3 =0, My = M, :"f‘?rw(), for o = 5

(II) A disc-source is obtained from the cylindrical cavity in the linit 6 = 7.

Equations (37)-(38) then render

1

)
_1 _9 L= 58
fO 2 f2 83 g2 ( )

ol
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567 5 1
My = 224200 =3.08wqy, M; =My = 18743(( = 015wy, for o = Zi.’

. 1
Mg = 3wy, My =My =0 for o = 5"

Note that (55) predicts My = M7 = M3, under the condition

f2+ 392 =0. (59)

This indeed occurs for a cylindrical cavity for 6y = 50.3° (2R =~ 1.2H). In this
case the cylinder mimics a sphere, with no radiated shear waves (1), independently
of the medium’s Poisson’s ratio [Figs. 5, 6].

Oblate cavities

As long as the observer is placed in an unbounded homogencous and isotropic
elastic medium, no distinction need be made between oblate and prolate cavity
since we can always choose the z-axis to coincide with thie major syimnetry axis of
the spheroid. This symmetry is broken once a stress-free houndary is introduced,
for now it makes a great difference whether the cavity is aligned normal or parallel
to the free boundary. For tunnels with axis of symuictry parallel to a free surface,
the radiation patterns can be obtained by rotating the oues obtained previously
by 90° relative to the fixed cartesian coordinate systemn that was chosen above. In
the long-wave approximation this amounts to an cquivalent force system of three

orthogonal dipoles with moments { M7, My = M3}. Equation (51) is then modified
into

- iM3k2 = = N

U3 = 487ws [v2(2Lo,0 — 4Lo,2) — 4Ng 2],

L iMgk?, - - o

Uy = 1223 %s [72(2130,0 +2Lg2 + Log2) + (2Ng» + N'Z,Z)]’ (60)
48

L iMyk? = = = Y i

i = —=—=[72(2Lo,0 +2Lo,2 — La,2) + 2(Np2 — Na2)].
487 u

In this new configuration the z-axis is aligned along the smaller moment My, now

parallel to the free surface. The combined field {u; + @, + @)} is then expressible
as

- 1]»2 Vs 4 =g
up(kpr) = o\ L o(kpr)
zk2 vs \ ¥ =
— (M3 — M S (=) LT (hpr
( 3 1)127"/‘ <'Up> 0’2( p?)

Zk? vs 4 =
+ (M3 - M1)247r,u ;; LZ,Z(I"])"')a

(61)

zk2 ik2

Us(ksr) = (M1 - Mg)NO o (kst) —




The source moment tensor

Every dlpolar source can be represented by a sccond order symmetric carte-

sian tensor M (Ben-Menahem and Singh, 1981, pp. 168-171). Its corresponding
displacement field is given by the expression

@(7) = M:grady{ G (7 | 7))}, (61a)

where 8 is the Green’s tensor of the elastic medium. We have first shown that the
displacement fileld of a symmetrical cavity with a symmetry axis in the z-direction
is equivalent to the combined fields of three dipolcs, cach along a coordinate axis,
at the center of the cavity, with the respective strengths ”11 = My, My» = My =
My, M3z = Ms.

Thus, in the light of (53), the moment tensor of the cavity can be written in
the dyadic form

g —
M= M T + (M — M)y (61b)

H -
where M, I is known as the isotropic part of the tensor, and (A — My)cses s
the deviatoric part. This last part is the true signature of the non-spherical cavity
which makes it distinct from both symmetrical explosions and carthquakes.

5. Surface Waves from Explosions in An Underground Cavity

Knowing the source-fields in an unbounded domain, the surface-wave fields
in the presence of a stress-free planar boundary can he evaluated in a routine
manner. This becomes necessary if one wishes to calculate theorcetical waveforms
of Rayleigh waves produced by explosions in underground tunnels. Since usually,
the long axis of the cavity is parallel to the free surface. we must use as our source-
field the displacement produced by an oblate cavity as given in Eq. (61), where
we now denote it as

- 70 = @y (kpr) + To(kyr). (62)

It is convenient to express the Lh.s. of (61) in terms of the cylindrical vector
harmonics via (A-1)-(A-8). It yields the source displacements and associated
tractions in the form

ﬂ‘(O) PO(w /Z - — £+l ”l (1‘)/ l i (63}

2
202

where

-

9 =708 505, L =0a (64)
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(¢,m) =(0,0), (0,2), (2,2)

and

ks (K2EAN dPI(is) _,, -
T = —2eAc PP (np)e” 71 4 2B, ( ) e e

kp \ k3vs 1dn
A0 _ EN gy vomvalel oo, Ko ((KEp\ 4P () _ ey 65
2A£< p)Pg (np)e™"r eng ]J . (65)

Eo /b L
) =2Bek—( )Pem(n Je~vell
P

VR R

Tp =€ —, Ns = le=—a—. e =sgn(s — ), (6G)
P 3

with the coefficients A, and By defined in (25)-(20).
The stress-vector (normal traction) associated with thic source displacements,
1s
& - T[] = A diva® + u(val® + 70w,
0y,, kdl (67)
=p0(w /z M £+1T1(n l) .

2/2 H

with the dimensionless partial stress expanded as:

70 —x0p + 795, +70¢,. (68)

T

0) ) 1
PXO Z o Fm +3( m —WSS’)

0z p\ 0Oz
=0 .—(0) , T (69)
-- kY, = kT + ——

0z

™o 9z
Using (65), this becomes




— 2k2 — L2
X0 _ 2A6Pg”(np)[:’”y_kkz} o= vplel
P
. 1.2
_4:B£ E l\,l\:'}p dPF(n‘S)C—USi:l
kp k3 1dns
YO = _4ea, P ()0l $ (70)
ks k?, 9 o | P (ns) _, <]
B ZP(op? _ 2y L \TS) —ws
+2B, kyp [k?us(—k £s) tdns ‘
. . 12
?(n(:) = —QEBZE k—p sz(ns)e_"’i:1,
kp | k

(gvm) = (0’0)7 (0,2), (2,2).

Note that in our formalism, {&‘ﬁg),ﬁ(,?),fg),fﬁg)} are dimensionless, but {17(0),

«—
T(ﬁ(o)} have the respective dimensions of displacement and stress.

We can now state our boundary value problew in ters of these source dis-
placements and stresses and the yet undetermincd corresponding cutitics of the
half-space. Assume an expansion of latter in terms of cylindrical vector harmonics

[Appendix A],

—

Um = fmﬁm +ym§m + EIILC'”Z' (71)
Tm = Ymﬁ.m +7-§m + 76:1)!.,

where
Tm = amvpe P® + by k¥ 7,
Ym = amke’?? + bpvget*, (

= v
Zm = cme’??.

-1
o
N

Here, (am, bm, cm) are undetermined amplitude cocfficients of dimensions
(length,length, 1) respectively

kX = (252 — k2)ame’™? + 2lub,, "%

kY 1 = 2upkame”?? + (2k% — :2)h "< (73)

kZm = VsCmeusz.

Again, {Em,ym,fm;fm,?m,zm} are dimensionless physical cutities. The total

field is 7 + @9, Applying the condition of a free surface at = = I
& Tla+a®) =0 at ==h. (74)
—ey -




we get

X0 Xn=0 TO4Vn=0 Z94z,.20 at ==h (75
Solving for the coefficients {am,bm,cm} and substituting the results in the ex-

pression for the total displacement field, we find for the ficld on the free surface

(e=1, 2=h)

kdk
gtotal _ "'(0)+ pO(w)/Z 1= (41 —':7(;LLI ( (76)

212"
gtotal U,,Pm + UBBm + Uch, (77)

ks k?’ m —vsh
Uc=4Bg-l; E; Pg (ns)e™"",

ks
Up = —2AP;"(np)e™" +'7ng [

k21\,2] de(I],s) - i

k3vs | idys
<p>’*1“£ e
Ua = 40 ) o (rp)et - 23/1: (’ﬁ) (”j'(';;:m v
— 24P P)%((Lk)) vy 2B 1\,, (U:,Cjzl,;:h ]1]5] %((lf\))e_m’
(€,m) =(0,0), (0,2), (2,2), (78)
R(k) = (2k* — k3)? — 4k?wpv, -

R+(k) = (2k2 - k?)z + 4/.:21/7)1/5,

Ri(k) = R¥(k) — 4k?(2k2 — k2),  Ra(k) = RY(L) = dupue(202 — k2),

‘The source-terms in the expressions for Ug, Up and Ug do not contribute to the
surface-wave field and can therefore be ignored in this study. The remaining terms,
which have R(k) in their denominator [Egs. (62)-(G3)], contribute to the Rayleigh
wave through the pole of R(k) = 0 in the lower complex k-planc [Re w > 0; see
e.g. Ben-Menahem and Singh, pp. 263-265].

The relevant integral in (60) has the form [~ .J,,.( /\A)%dl'
= %f_oo Hg)(kA)ggfgdk where H( )(LA) are the Hankel functions of order m




of the second kind. The pole of R(k) = 0 is at /'[g = ~ks where v 1s a root of

/

theequa‘tlon(77 —1 —4/ V’Y - ‘/A/ "“_" FO].O’—:'(/\——}L),"—'—'*—:

unr

(2-2)7% = L0875,

mil (k)
k{G ()

The residue of the above integral at k = kp is given by { }H,(;f)(kRA)

where G = %‘1—12)} = 2.51220... .

The terms in (62)-(64) which do not have R(L) in their denominator (direct
waves), do not contribute to the residue field and hLenee do not generate surface
waves. Inserting in (76) all the relevant entities from Eqs. (78)-(79), using the

relations kp = vks, kp = —l—‘\/? (c = %), mp =1V37% — 1,55 =1/~% — 1 and

292 —1)\*
Ri(kp) = —2k3(2¢% ~ 1), Rz(m:/.-:( ’ )
(80)

the components of the spectral Rayleigh-wave (hsplcmm( nts for ¢ < 4 at
(z = h, A, ) which fall off with distance like A~!/2. arc

4. = _Smpo(w) 7(2y% - 1) 2 i(F-kua)
, = ./
2ukp  G(7) Tl

% [sle—hk, -1 _326—/1/\-5\/7'-’—1]’
u — 67rp0(w) Y V 7 - ———l\/fA
A wky wkng

—hkyy/y2-1% —hks ~-~|]

X [816 3 — 89¢

. 5] = — [(2A0 + Ag) — 972A2 cos? ‘;] .
s2 = —(2v% — 1)By cos? .

6. Numerical Results for Radiation Patterns of Body and Surface
Waves

For the numerical calculations of radiation patterns of hody waves generated
by explosions in prolate spheroidal and cylindrical cavities. we used Eqs. (21) and




Py (w)
Tukp
(i.e. expansion up to the 8" order in spherical harmonics). All the vector spherical
harmonics Lo, and Ny, (£ = 0,...,8) were calculated exactly using the formulas
given in Appendix A. The functions Fy 1, Fy 9, Fr 3 and A were caleulated using
formulas (8). The shape-dependent coefficients f; and g, were calculated exactly
using the equations (32)-(33) for prolate spheroidal cavities and (37)-(38) for
cylindrical cavities. The integrals in Egs. (32)—(33) and (37)-(38) were calculated
as finite double sums, using the analysis given in Appendix B.

22) normalized b . We calculated the first five terms in the infinite series
y

Spheroidal cavity

Figure 5 presents radiation patterns of body waves in the z-A plane for explo-
sions in prolate spheroidal cavities (the z-axis corresponds to the axis of syminetry
of the cavity). Radiation patterns were calculated for kyrg = 0.01 (long waves),
kpr = 100.0 (far-field). The six parts of Figure 5 correspoud to the values of the
aspect ratio € = ¢ = 1.0 (a sphere), 0.8, 0.668, 0.414, 0.199 and 0.0 (line source).
For a spherical cavity (Fig. 5I) the radiation pattern of P-waves is symmetric and
no S-waves are generated. Since in the far-field terins of order /% arc negligible,
the P-patterns are those of the radial component of the displacement vector (23),

while the S-patterns are those of collatitudinal component of the displacement
vector (24).

As the shape of the cavity deviates from spherical, the P-wave radiation pat-
tern becomes stretched in the direction perpendicular to the major (the longest)
axis of the cavity. At the same time shear waves arc generated.

Qne can see that radiation patterns are dominated by Z()(), f()z for P-waves
and Ny for S-waves [the calculated coefficients of higher (> 2) order spherical
harmonics were several orders of magnitude smallcr for kyyrrg < 1]. This is consis-
tent with the conclusions of Section 4, that the long wave radiation patterns are
dominated by dipole terms. As the shape of the cavity is stretched from a sphere
to a line, the vertical (along z-axis) dipole becomes smaller. and the horizontal
(along z- and y-axes) dipoles become bigger. Therefore the P-wave radiation pat-
tern becomes stretched in A-direction, and shear waves are generated.

Cylindrical cavity

Figure 6 presents radiation patterns of body waves in the = A plane for a
cylindrical cavity (the z-axis corresponds to the axis of symumnetry of the cavity).
Radiation patterns were calculated for kprg = 0.01 (long waves). kyr = 100.0
(far-field). The six parts of Fig. 6 correspond to thc cylinder apperture angles of
o = 0.0 (line source), 7, ¥, 0.8779 (50.3°), %’1 and F (disc source). As for the
previous case of the prolate spherical cavity, the radiation patterus are dominated
by dipole terms.
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For 6y = 0.8779 (50.3°) all three dipoles M;. Af,, Ay have equal values [i.e.
f2 + 392 = 0 in equations (53)).

In order to study the effects of higher order (¢ > 2) spherical harmonies,
we calculated radiation patterns for wavelengths comparable with the size of the
cavity (the radius of the equivalent sphere). Figure 7 presents radiation patterns
of body waves calculated for kprg = 1.0, kpr = 10%. Oune can sce that higher
harmonics change only a little the radiation patterns for this wavelength [probably
the strongest effect can be seen in Fig. 61V for 6 = 0.8779 (50.3°). The S-wave
radiation pattern is given primarily by ﬁ04].

Higher order (¢ > 2) spherical harmonics play a significant role only for wave-
lengths much smaller than the size of the cavity (kpro > 1). However, for realistic
cavity sizes (100 meters at most) this wavelength arc not obscrved in far-field
seismograms due to attenuation. Therefore we may conclude that the far-ficld
radiation patterns of body waves generated by explosions in arbitrary cavities will
be dominated by dipole terms (i.e. two-lobe radiation pattern for P-waves and
4-lobe patterns for S-waves).

This conclusion is consistent with the results of direct munerical simulations
by Stevens et al. (1991) who presented radiation pattern for an explosion in a
prolate spheroidal cavity with aspect ratio e = 0.25.

Figure 8 exhibits the spectral amplitude dependence of the field on the apper-
ture of the cylindrical cavity. We note a node for S-waves at 6y &~ 50.3°, at which
the P-waves pattern is spherical. The S/P energy ratio is extremal at 6y = 0 (line
source) and 8y = 7 (disc source), but is small over the wide platcau 8y = 7 — %’5
Corner-frequencies

In order to calculate the frequency dependence of hody waves amplitudes we
had to make an assumption about the time dependence of the pressure pulse P(t)
applied at the surface of the cavity.

The most straightforward assumption is that P(t) is given by the step function

o 1 t>0
P(t) = 81
®) {0 t <0. (81)
the Fourier transform of which is given by
1 :
Po(w)=—  (w#0) (82)
w

We calculated amplitudes of body waves given by (21) and (22) using (82) for
n=107%
™




Figure 9 presents frequency dependence of P-wave amplitude generated by the
pressure pulse (81) applied at the surface of cylindrical cavity. Figure 9 corresponds
to cylinders with apperture angles g = 0.0 (line source), %, T, 0.8779 (50.3°), %”
and % (disc source).

Each of the figures contains amplitude-frequency dependences for signals ob-
served at the § collatitude angles § = 0, ¢, T, %1 and 5. We plotted the logarithm
of the amplitude versus the logarithm of the dimensionless frequency:

rTow

LT = ——. 83
LpTO vy ( )

All calculations are made for 1} = 1074

It is clearly seen that the “corner-frequency” in all tliese plots corresponds to
the wavelength equal to the radius of the equivalent sphere of the cavity.

Figure 10 presents the amplitude-frequency dependences of S-waves for the
same situation. The plots contain amplitude-frequency dependences of signals
observed at collatitude angles § = §, T and 3T (the amplitude of S-waves radiated
in the direction along and perpendicular to the axis of symmetry of the cavity is
negligible in comparison to the P-wave amplitudc).

For these plots we used dimensional frequency given by

ToWw
ksro = 0

(84)
Us

It is again obvious that the “corner-frequency” correspouds to a wavelength equal

to the radius of the equivalent sphere.

We may therefore conclude that the size of the cavity wherein the explosion
takes place can be deduced from the corner-frequency, provided that there was full

decoupling and that the shock wave — medium interuction occurred in the clastic
regime.

Surface waves

For numerical calculations of surface-wave radiation patterns we used the
dipole approximation derived in Section 5.

Figure 11 presents radiation patterns of Rayleigh surface waves generated by
explosions in cylindrical cavities with an horizontal axis of synunetry parallel to
the free surface. Radiation patterns were calculated for ko = 0.01 (long wave),
kpr = 100.0 (far-field), k,r = 0.0 (shallow source). i.c. for a source at depth much
smaller than the wavelength. The pattern in Fig. 11 correspond to cylindrical
cavities with apperture angles 69 = 0.0 (line source), T, X, 0.8779 (50.3°). % and
5 (disc source).




One notices that for a source-depth much smaller than the wavelength, the
Rayleigh-wave radiation patterns resemble the oncs for the corresponding P-waves.

Figure 12 presents radiation patterns for the same cxplosions but for a “deep
source” with kpr = 1.0. At this depth, the radiation patterns change considerably
relative to the corresponding ones at A = 0, duc to the amplitude decay with

depth.

Corner frequencies for surface waves

Figure 13 presents amplitude-frequency dependences of Rayleigh surface waves
generated by pressure pulse (81) applied at the surface of cylindrical cavitics with
horizontal axes of symmetry. The amplitude-frequency dependences are caleu-
lated for kph = 0.0 (shallow source), L= 10™* and plotted against dimensionless
frequency.

The various patterns in Fig. 13 correspond to cavitics with apperture angles
8o = 0.0 (line source), %, T, 0.8779 (50.3°), 38’—7 and % (disc source). The five

curves at each figure correspond to the singal obscrved at the 5 azimuthal angles
T T 3r

9020, ] 4> ?and%.
The left side of all the amplitude-frequency dependences have a slope of %
(compare with the same curves for body waves for which the left hand side is

horizontal). This is because the surface waves decay at rather than I%.T

!
(I"I’ ) 1/2
(body waves), which brings in an extra factor of /2.

For a “shallow source” the “corner-frequency” correspouds to a wavelength
that is approximately equal to the radius of the cquivalent sphere.

Figure 14 presents the same amplitude-frequency dependences but for a “deep
source” with ky,h = 1.0. One can see that the amplitude-frequency dependences
are mainly controlled by the exponential terms e *r" and ¢=*<".

7. Disqussion

The radiation of seismic body and surface waves from explosions in under-
ground tunnels has been calculated in the far-field of thic clastic zone. The following
assumptions and approximations were made:

o The reflected body-wave field from the free surface was ignored; only direct
P and S signals were considered. Since thesc waves are truly diagnostic of
the source, it is perhaps preferred to isolate the direct ficld from the data

and compare the Fourier transformed P and S waveforms with our theoretical
model.
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e  Conversion of body-waves to Rayleigh waves and vice versa was ignored.

¢ Our theory is valid only for wavelengths which are much larger than the
dimensions of the cavity. Shorter wavelengths arc assumecd to be absorbed
and not present in the data.

It is clear from Figs. 5, 6 and 7 that the radiation pattern for P-waves is always
dipolar, i.e. it can be represented by a single equivalent dipole with at most two
lobes and one nodal line. The S-wave, on the other hand. is quadrupolar. which is
the resultend of two perpendicular dipoles.

We know, however, that most earthquakes have quadrupolar P-wave patterns
(Frohlich, 1994) which arise from the double-couple naturc of its cquivalent force-
system. Thus, for the sake of comparison with (Gla), the mowment tensor of a
standard earthquake has the dyadic form

—

M = My(é1e7 — éyeé:

05_6)161 €2€2) (85)
= Mo I — Mp(2€2€2 + ¢4C7y).

By removing the isotropic part from (61a) and (85), oue can examine the deviatoric
part of the cavity explosion to see whether it conforius to a standard carthquake
source. Obviously the two deriatoric parts are worlds appart hecause of the extra
term {—2Mpézé2}. Thus, the explosion will look very strongly like a ‘non double
couple earthquake’. This can, and should, serve as u dcfinite test for a suspicious
clandestine explosion.

Stump et al. (1994) analyzed the near-source scsimograms recorded from the
Coalora nuclear explosion (Yucca Flats, Nevada Test Site, February 11, 1983).
They showed that the source moment tensor had an isotropic part 5 to 10 times
greater than the deviatoric part, which according to their analysis was mostly due
to spall. We suggest that the data inversion scheme used by the above authors can
be applied to signals arising from underground explosions in order to determine
the influence of the shape of the cavity upon the deviatoric component of the
source’s moment tensor.

The theory is valid for a homogeneous elastic medinin.  However, known
algorithms for multilayered media can be applied to our source fields, to generalize
the results for multilayered media that takes into account such plienomena as
dispersion, attenuation and scattering. The fast convergence of our computational
scheme will not be affected by this generalization, since this convergence depends
only on the shape of the cavity and not on the propertics of the clastic medium.

On the other hand, the propagation of the source ficlds through a vertically
heterogeneous media will generate SH and Love waves, the analysis of which may
render additional information on the shape of the cavity and the spectrum of the
initial pulse. Indeed, Love waves and Lg signals were observed from underground
decoupled nuclear explosions.




The present paper does not address directly the problem of seismic decoupling,
namely, the dependence of the signals spectra upon the shape and strength of the
initial pressure pulse, and the dependence of the seismic yicld on the shape of

the cavity and the rock-mechanical properties in the neighborhood of the cavities
boundary.

The main thrust of the present paper was coucentrated on the extension of
Sharpe’s naive model to non-spherical cavities. The sub ject of decoupling and its
implication to monitoring of small nuclear explosious in underground cavities will
be treated in a sequel paper in this Journal.
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Legend of Figures

The geometry of explosion in cavities: (I) spherical cavity in an un-
bounded solid; (II) prolate spheroidal cavity and its “cquivalent sphere’;
(III) oblate spheroidal cavity in a half-space with a free surface (2 = h).
Major axis cross-section of a prolate spheroidal cavity () = T\/—:TTH’
k=1~ (%)2. The equi-volume condition renders 1y = a2/3¢1/3 for the
equivalent sphere.

Cylindrical cavity of radius R and height H. The paramcter 6y =
tg~! (2}?-) controls the radiation-pattern of the source.

Simulation of cavities by a combination of three mutually orthogonal
dipoles: (a) vertical cavity with My = My > 1fy; (b) horizoutal cavity
with M3 = My > M.

Radiation patterns of body waves displacemcuts generated by explosions
in prolate spheroidal cavities with different aspect ratio € = = (Fig. 2).
Patterns are drawn in a vertical symmetry planc cimbedding the z-axis,
with the collatitude angle 8 increasing from zcro (= = 0) clockwise: (DHe=
1.0 (sphere); (II) € =0.8; (III) € = 0.668; (IV) e = 0.414; (V) e = 0.199;
(VI) € = 0.0 (line source). Solid line — P-waves (radial. u,.); dashed line
— S-waves (collatitudinal, ug). kpro = 0.01 (long wave); kyr = 100.0

[ |
(far-field); o = 7.

Radiation patterns of body waves generatcd by explosions in eylindrical
cavities with different apperture angles 6y: (I) 6, = 0.0 (line source);
(II) 60 = §; (II]) 6p = Z; (IV) 6p = 0.8779; (V) 6y = 3T (VD) 6p = %
(disc source). Solid line — P-waves; dashed line — S-waves. kpro = 0.01

(long wave); kpr = 100.0 (far-field); o = %.

Radiation patterns of body waves generated by explosions in cylindri-
cal cavities with different apperture angles: (I) 6y = 0.0 (line source);

(1) 6o = g; (IIT) 6o = F; (IV) 6y = 0.8779; (V) 6y = 3T; (VI) 6y =

(disc source). Solid line — P-waves; dashed linc - S-waves. LKyrg = 1.0;
kpr = 104 0 = %.

Dependence of the body wave amplitude ou the apperture angle 6y for a

cylindrical cavity. Observation angles: 0% - - Fi----- S SIEEREE
1875; ----- 5o (D) |up| versus 26g/m; (II) |@,| versus 26 /7 (1) lz.lo

iy
versus 26p /. Note the nodal point (V) at which the P-radiation patterns
are spherical (no S-motion).

Amplitude (In|@p]) frequency (Infkprg]) dependences of P-waves gener-




Fig. 10

Fig. 11

Fig. 12
Fig. 13

Fig. 14

ated by a pressure-step applied at the surfacc of a finite cylindrical cavity

observed at different collatitude angles: =0 --0= g -----
O=75% - 6= —3-5; ————— 6 = §. Apperturc angles of cvliudxicnl cavi—
ties assume the values: (I) 60 =0 (line sourcc)' (II) 6 = g; (1I1) &y = T;
(IVv) 90 = 0.8779; (V) o = 55 (VI) 6 = 5 (disc smu(c) o =104
o = 3. Note the corner- frequency at kprog = l
Same as 8, but for S-waves. Observation angles are: - § = §; -----
f=T...... § = 3«

=7 =3

Azimuthal radiation patterns of the vertical Rayleigh surface wave dis-
placement generated by explosions in cylindrical cavitics with different
apperture angles: (I) 6y = 0 (line source) (I1) 6 = F; (III) 6y = F:
(IV) 6y = 0.8779; (V) 6y = 8 ; (VI) 8 = 5 (disc source). The z-axis of
the cavity (Fig. 3) is parallel to the free sm'leco. Note that the pattern
of body waves and surface waves from the Lorizontally cylindrical cavity
are both in the same horizontal plane, and thicrefore can be compared.

Same as 10 but for a deep source (kph = 1.0).

Amplitude (In |u.|) frequency (In[kprg]) dependences of Rayleigh surface
waves generated by a pressure step applied at the surface of eylindrical

cavity, observed at different azimuthal anglc s: e=0 —-p=%;
----- =T = —31 st =3 App(ltmc angles <)f cylindrical
cavities are: (I) 90 = 0 (hne source) (II) 6 = 5 (II1) 6y = T (I\ ) 8 =
0.8779; (V) 6o = =5 (VI) 8o = § (disc source). 2 = l()—1 = ;]1-;

kph = 0.0 (shallow source) Note the corner-frequenc r/ at kyrg = 1

Same as 12 but for deep source kph = 1.0.




Appendix A: Fundamental Elastodynamic Vectors. Associated
Functions and Coordinate Transformation Relations

The Hansen elastodynamic eigenvectors in spherical coordinates (1, 8, ) with
unit vectors (€, €y, €, ) are:

+
7 5 -z (kpr w
LE, = BousF (kpr) + VI + 1)Bm£_£(_f’2, T

( (ks,)
NE = Pogt(t + )20 o ST B[ L) k), (4-1)

me =Ll +1) Cmﬁzg ksr).

The spherical vector harmonics are:

P = & PJ*(cos 8)e'™?

V(L + 1)-§m£ = (-’ 9 + €0 10 )Pm(('os H)(;'.”"",

“6 26 sin§ Oy

vé(é—}-l)@mz = (é‘a_l-_a_ - _a_)Pe (cos 9) zma;'

sinf Oy “° 50
In (A-1)-(A-2), zZ'(a:) = j¢(z), spherical Bessel fuuction of the first kind and

z, (z) = hgz)(z), spherical Bessel function of the sccond kind. P/"(cosd) is the
associated Legendre polynomial of degree ¢ and order m. A prime (') denotes
differentiation w.r.t. the argument, and k; = kp or k.

In circular cylindrical coordinates (4, ¢, z) with unit-vectors {€a. €, -}, the
Hansen vectors assume the form:

Ei = F(inﬁm + kﬁm)ei”r:,
P

- 1 - - A 1 —
Nt = - (kP £ vy Brn)e™, (4-3)
MZE = Crnetvez.

vp = ‘/k2 — kg, Vg = k2 — ks27 Ym(lu-'A,&;’) — ,]”,_(/\:A)(-"‘m"‘"

where

m(LA ) = e Ym(kA, ), m=0,1,2,...,
= . 0 . 1 0)\..
Bm(kA:‘r’) = (CA‘ak_A + e(pm%))'m(l\’A»Q)s (A —4)
5 . 1 a . 0
Cm(kAv ‘P) = (CA'EZE’S; - egoakA>) (kA p)
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We shall need the results,.

divP, =0, &divBy = —kDPn, div Gy, = 0, (A =5)

Ez * (vﬁm + ﬁmv) = kﬁ?”ﬂ
& (VBm + BnV) =0, (4 —06)
gz . (Vém + C-:mV) = 0.

Transformation of spherical to cylindrical eigenvectors was treated by Ben-Mena-
hem and Singh (1981, p. 78). 1t is shown there that the exterior Hunsen vectors
in spherical and cylindrical coordinates are linked through the mtegral relations,

hedl:

oo
o 1. ~(0
Erdbor) = gm0 [ B0 00P )~
p J 2 4
o0

L 1 e ~(0 dP;™ (1)
Nrlkar) = =i ‘/ 'm)(kSA)[ ¢
0

s d77s

%)
m— =(0) ok

_zm +1 /]\Jm (ksA)Pém(Us)-"‘;:——ﬁ . (‘_1 _ 7)

0 v Uy
M, (ksr) "‘“71\?“”@ A)[dpz (m)} 12l
T)=—-51
me\"s ‘g ) m s dns 1.2 _ /\f

dl

v h? = Io2 .

T 2(0)
-ttt [ )P G
0
Here

€ =sgn(z — z9), Np = 1€

L (k) = (v P + kB )0,
p

N (ko) = (kP = evaBo) 11 (4-8)
S

AZST?)(ICSA) = éme—uslzl’

vp =k —k2, o= [h? -2
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=(0)  =(0) - = . . .
The vectors M,, , N,, are obtained from JMT(,?), N,‘,t:) on replacing Y7, (A, ) in

the expressions for P, etc. in (A-4) by g%Ym(kA, 2). Relations (A-T) are also
valid when Y;,4(6,¢) in E;l’ etc., is replaced by l"yi‘f((),go) and Y, (kA @) in

1352), etc., is replaced by Y *(kA, ). In (A-7), P/ is the Legendre associated
polynomial.

By definition
Y, )(8,0) = P™(cos 6)(cos mep, sin ).

The associated vector harmonics are denoted P;;Z etc. The same applics to cylin-
drical coordinates.

The recursion relations needed for our computations arc:

2041
2e41(2) = ———2¢(z) = 2-1(2),
204+1 14 .
Py yy(cosb) = rT1 s 6Py(cosb) — e_*__lp[_]((:()b' 8), (A-9)
aPl'Ha(GCOS 9) = 6Pg_1859008 6) — (22 + 1)(sin 6P (cos b).

The participating scalar eigenfunctions are,

zjo(z) = sinz,
z?j1(z) = sinz — z cos z,
.”csjz(a:) =(3 - z2)sinx — 3z cosz,
z4j3(:z:) =(15 - sz)sinx + (z3 — 15z)cos z,
m5j4L:q) = (105 — 4522 + :1:4)sinz + (10:1:3 — 105z) cos
Iejs(:c) = (945 — 420z + 15:1:4)sin:l: + (—x5 + 1052 = 9452) cos 2,
:z7j6(m) = (10,395 — 472522 + 210z — ms)sinx
+ (=212% + 1260z° — 10, 395z) cos z,
28j7(z) = (135,135 — 62,37022 + 3150z% — 282%) sin
+ (27 - 3782% + 17,3252° — 135,135 cos «,
29j5(z) = (2,027,025 — 945,945z2 + 51,975z — 63045 + ) sin «
+ (3627 — 6930z° + 270,270z% — 2,027, 0252) cos «,

(4 ~10)




ei® h(2 z) =

(
”h(Q (z) = -z +1,
23R (z) = —3z +i(3 — 22),
(
(

steinh® (z

) = (=15z + %) + i(15 — 622),
25ehP (z) = (~105z + 102%) + i(105 — 4522 + 2),
6= h? () = (=2 + 1052% — 9452) + §(945 — 42027 + 1527),
T b (z) = (-212° + 12602 — 10, 395¢) (A-11)
+1(10, 395 — 472522 + 210z* — 2%),
8ei=h{?) (2} = (27 — 37825 + 17, 3252% — 135, 1352)
+ (135,135 — 62,370z + 31502* — 28z%),
9eiz () (1) = (3627 — 693025 + 270, 2702° — 2,027, 025z)
+1(2,027,025 — 945, 94522 + 41,975z*

— 63025 + z8),
Py(cos) =1,
P;(cos 6) = cos 4,
Py(cosf) = —cos 29 —% ,
P3(cos ) = gcos3 0 — g cos b,
Py(cosb) = Eco o %qcos 9+§
Ps(cos ) = %? cos® § — 7—80 cos® 8 + % cos 6, (A4-12)
231 315 105 5
Ps(cosf) = =— cos® 9 — =— — - =
6(cos §) T 6 Thae ‘6 + 16 cos’ 6 6
429 693 315 os3 35
P 0) = — - — 6 6 — — cos 8,
7(cos 8) = T 79 16 < + — T Tha
2
PBg(cos §) = 142385 cos® 6 — ll’—zosl—g cos® 9 + 6;)93; cos® 8
1260 24 35
128 “° "7 128
Note that
21 (2) = ay(z) + iby(a), (4 —13)
where ay(z) are polynomials obeying the recursion rclation
agy1(e) = (20 + ag(z) — 2%ar_1 (x), (A —14)
subjected to the initial conditions ag(z) = 0, aj(z) = —2. The polynomials by(z)
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obey the same relation, but with the initial conditions bo{z) =1, by(z) = 1. Also

¢ |
z) + iby(z Y; [L'££+_k2)'](i:c)£+l'k. (A -15)

Similarly, if we put in (A-7)

x“‘ljz(m) = dysinz + by cos , (A —16)

we find that {g@,b} obey (A-14) subjected to the initial conditions
apy=1, a=1; bp =0, b =-—z. (A-17)

In the far-field we may assume kpr > 1, kgr > 1. Conscquently, the spherical
Hankel functions appearing in (58) may be approximated by

B(2) e 1 0

(
A () it (L), (A-18)

T z 3
@1\~ b iz 1
hy " (z) = —¢ +0 $2>.

Hence

%m@w;[

—tkpr 29 _
mew)zﬁf ’]P”Sg ﬂa, (4-19)

‘)

<

} sin 26¢éy.




Appendix B: Quadrature of the ‘Cavity Integrals’

We wish to evaluate the non-zero spheroidal cavity coefficients for ¢ = 2n,
k=1-¢? n=1-¢

ke
-k ‘
fon = 1 + ! / 1= koos” 9 Py, (cos ) sin 848, (B -1)
4 V1 —mncos?d

—(4n+1) ksinfcosd
2n(2n +1) J V1= n cos? 8

Inserting the expansion

P} _(cos8)sin® 8d6. (B —2)

gon =

Pynp(cos ) = Z C2n,2j cos? g, (B -3)
j=0

th

where ca,, 95 is the 25" coefficient of the onth Legendre polynomial, we have

/2

2 g
f2n - (4TL + 1) Z Con 2]{ COS sin 8d6

\/1—ncos

ﬂ'
2542
—k/——Le——sinOdQ}, (B —4)

V1 —ncos?é
/2

—(4n +1 cos?) § )
gon = ( ) Z JCon 21{ sin 8d6
0

n(2n + 1) V1—ncos?6

cosZit2 g
vV/1—mncos?d

It is thus necessary to evaluate only a single integral-type for both coefficients. It
is readllv shown that

sinOdG}. (B -95)

/2 y /2
J . .
_cos7b sin 8df = n"3—1/2 / cos?t EdE, (B —6)
V1 —ncos?6
£o
35

where cos§p = /7 and fg;/ % cos2d £d€ is given in (2%). Therefore,

fon = (4n +1) Y conai{n7I7 V2 Dyi(€0) — kI 2 Ly 40(60) ), (B = T)
=0




4n+1> i—~1/2
2 -j=1/2p, .
9 = B E jc2n.25{ 25(&0)

—n-3-3/212,-+2<50)}. (B -8)

The evaluation of the corresponding integrals (37)-(38) for the circular cylinder
cavity proceeds along the same lines. Here we need, in addition, the exact results

(Magnus et al., 1966)

fo
1
/COS 8Py, (cos §)sin 8df = TR ) [— sin? 8y Py, (cos 8p)
0
+ sin? 6 cos 6o P5,.(cos 90)] , (B -9)
o ')
2 ! . e ain2 _ =
/sm 6 P,,,(cos 8) sin 6df = — sin” 6y Pay,(cos dy) n =)@ £ 2)
0
X [sin2 69 Pay(cos by) — cosbo sin? 8o Ps,, (cos 6y )] , (B - 10)
' 0
" Ocosb )’
The remaining integrals in (37)-(38) can again be expressed in terms of Iz;. Al-

together we find

-1

. 2
0 9
(2n —1)(2n + 2) {sin 8 Pan(cos o)

fan = (4n + 1)[

n
— sin? §y cos 60 Ps,,(cos 90)} - z czn’zj{fzj_*.-z(eo) - Izj(QO)}], (B -11)
j=0
9

(2n - 1)(2n

n
— cos B sin? 80 Py,,(cos 60)} + E 2jc2n,2j{I2j+2(6’0) - Igj(()())}] (B —-12)
i=1

dn +1
2n(2n + 1)

gon = [— sin? 6 Py, (cosfp) — ) {sin2 09 Pan(cosbyp)
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